
10.1

page 1

31.10.1961

10.1 BRANCHED PROGRAMS

10.1.1 A program may be divided into branches which are regarded as

independent programs from the point of view of the time-sharer. By setting

up branches to deal with peripheral transfers for instance the efficiency

of a program may be significantly increased. The branching of a program

may, however, easily give rise to program mistakes and must be used with

caution.

10.1.2 Setting up a branch

A branch is set up by means of a special 150 instruction

i.e. 150 X Y 24

This instruction means:-

Set up a branch which I shall refer to as branch X and set its

entry address equal to Y. If branch X already exists make it jump to Y.

X is a small integer lying between 1 and 7 but if this is the

first branch to be set up then X must not be equal to 1 and in this case

the original program is regarded as branch 1.

New branches are initially switched off, waiting for the branch

which set them up.

10.1.3 Reservations

Each program in the machine needs a directory entry of at least

16 words and when a new branch is set up the space for this is taken from

the highest available region of the programs reservations, which are

accordingly reduced. In addition to this, 8 words must be allowed for the

branch directory, where the monitor program keeps details of the branch

relationships. (I.e. interlocks) In general, a program intending to have

n branches should request at least l6n-8 additional working store

locations.

All the branches of a program are given the same core, drum and

peripheral reservations, thus allowing information dumped by one branch to

be picked up by another and also allowing branches to communicate by means

of common markers.

10.1

Page 2

31.10.1961

10.1.4 Timing

The actions of the various branches are synchronised by means

of the fast special 150 instruction

150 X Y 2

The precise action of this instruction is shown in the following flow

diagram

Jump if Y=0 Jump if X is waiting

 for this branch

Jump if X is

not switched off

 ↓

Jump if X is Switch off this

waiting for this branch and mark

branch waiting for X

 ↓

Subtract 1 from

the control

number of X

 ↓

Switch on X

 ↓

Jump if y < 0

 ↓

Exit to time sharer

This instruction must not be premodified and replacement would

usually make it prohibitively slow.

Generally speaking the action is to switch on branch X if it is

waiting and to switch off this branch if y < 0. There are two exceptions.

(i) If X is switched off waiting for another branch the

effect is to switch it on but to subtract one from its

control number, so that it will again obey the 150/2

which caused it to switch itself off. This allows one to

deal satisfactorily with cases where several branches may

alter the condition on which another branch switches

itself off.

10.1

page 3

31.10.1961

(ii) Y=0. This is a special case. The effect is to switch

off this branch, waiting for X, unless X is switched off

waiting for this branch. The use of this special form is

illustrated in the example which follows in 10.1.6.

The normal form of the 150/2 instruction (Y≠0) should usually

be followed by a guard jump, i.e.

150 X Y 2

 64 -l+ Y

This is necessary to guard against a particular sequence of events which

could cause a branch to go although its count (y) is negative (see 10.1.6).

10.1.5 Multiple buffering

A distinctive feature of branched programs is the way in which

buffers are dealt with (“buffer” here simply means a region of the store

where information is dumped by one branch and picked up by another). If,

for instance, a branch is reading in cards it will usually have several

buffers and will fill them cyclically. If there are 4 buffers each of 20

words the branch must use a modifier taking successively the values 0, 20,

40, 60, 0, 20 and so on. The branch which deals with this information must

have a similar but independent modifier. In addition two counters must be

kept, one indicating the number of buffers left available to the input

program and the other indicating the number of buffers to be dealt with.

The sum of these two counts in this example will be the number of buffers

less 2, their initial values depending on the actual program.

10.1.6 Example

Suppose that a program can be conveniently divided into 3

branches which we will call for convenience, INPUT, COMPUTE and OUTPUT.

INPUT (branch 2) will read in a file from magnetic tape and at

some stage detect an end of file marker.

COMPUTE (branch l) will process this data and will use OUTPUT

(branch 3) to print out the results on a line printer. We will suppose,

for simplicity, that there are 4 input and 4 output buffers.

10.1

page 4

31.10.1961

The necessary organisational instructions are as follows. (They are given

more concisely in the appendix).

 150 2 INPUTE 24

 150 3 OUTPUTE 24

(Call the input and output branches 2 and 3 respectively and set their

entry points equal to INPUTE and OUTPUTE).

 14 IC1 3

 13 IC2 1

(Set initial values of input counts).

 13 OC1 1

 14 OC2 3

(Set initial values of output counts).

COMPUTEE) 150 2 IC2 2

 64 -1+ IC2

(Switch on INPUT if it is waiting. Switch this branch off if IC2m < 0 i.e.

there is no data to process).

Process next buffer

 10 IC1 1

 11 IC2 1

 10 OC1 1

 11 OC2 1

(Deal with counters. Note that each branch steps down the counts which

appear in its 150s and steps up the associated count).

 150 3 OC2 2

 64 -1+ OC2

(Switch on OUTPUT if it is waiting. Switch off this branch if OC2m<0 i.e.

all the output buffers are full).

 Jump to COMPUTEE

E) 150 3 0 2

 65 -1+ OC1

(Switch off this branch until OUTPUT switches it on and simultaneously

switches itself off, i.e. wait until all output buffers have been emptied.

The control number E+1 is set by the input branch).

Deal with end of file.

INPUTE) Read into next buffer.

 10 IC2 1

 11 IC1 1

 150 1 IC1 2

 64 -1+ IC1

10.1

page 5

31.10.1961

(Switch on Computing branch if waiting for this one. If it is switched off

waiting for OUTPUT, switch it on but subtract 1 from its control number,

i.e. make it obey 150 3 OC2 2 again. Switch off this branch if

IC1m < 0 i.e. all input buffers are full).

 Jump to INPUTE if not end of file.

 150 1 0 2

 65 -1+ IC2

(Switch off this branch until COMPUTE switches it on and simultaneously

switches itself off, i.e. wait until all the input buffers have been dealt

with),

 150 1 E+1 24

(Set control number of COMPUTE. Note that it is set as E+l and not E, in

case there is an interruption at this point and OUTPUT gets in and switches

it on.

 150 1 0+ 2

(Switch on COMPUTE and switch off INPUT, waiting for COMPUTE).

OUTPUTE) Print next buffer

 10 OC2 1

 11 OC1 1

 150 1 OC1 2

 64 -1+ OC1

(Switch on COMPUTE if it is waiting for this branch. If it is waiting for

INPUT, switch it on but subtract 1 from its control number, i.e. make it

obey 150 2 IC2 2 again. Switch off this branch if OC1m<0, i.e there is

nothing to output).

 Jump to OUTPUTE

When the instruction labelled COMPUTEE is first obeyed it will switch on

INPUT and switch off COMPUTE, waiting for INPUT. The input branch will

then be entered at INPUTE and after reading in a buffer of data it will

switch on COMPUTE again. This will then process one buffer of information

and switch on OUTPUT. The 150/2 instructions in this program ensure that

each of the branches is switched on whenever possible, and at the same time

ensure that one branch does not get ahead of the others.

10.1

 page 6

 29.11.65.

The necessity for the guard jumps can be seen by considering the

following sequence.

COMPUTE is interrupted when it is just about to obey the instruction

150 2 IC2 2.

INPUT is entered, proceeds until it has filled the last available

buffer and switches itself off because IC1 has become negative.

COMPUTE is now entered and immediately switches on INPUT.

The instruction 150 X 0 2 means switch off this branch, waiting

for X unless X is switched off waiting for this branch. By using this

instruction followed by suitable conditional jumps, it is possible, as

illustrated here, to shut down all but one branch and thus bring the

program into a standard, known condition, when special events may

satisfactorily be dealt with. Which control paths to close will obviously

vary with the program and the method given here is not necessarily the

best.

10.1.7 Special points about branched programs

(i) A program failure in or any OMP monitoring action for or any 150

instruction for any branch causes OMP to hold up (suspend) all

branches whilst OMP carries out its action.

(ii) A 150/10 (see 5.3.10) in any branch causes all branches to be stopped

in the same mode.

If the whole program has been halted e.g. after a 150/10 then it will

be started by a RUN directive for the branch which caused the halting, and

will be in the same state as it was in, before the halting occurred, so far

as branch interlocks are concerned.

(iii)The simplest way of making a branch shut down itself is to write

150 X 0 2

where X is the number of the branch itself. It cannot then be

switched on by any of the other branches unless they reset its

control number. There is a danger when using this device of losing

all the control paths.

(iv) The instruction 150/11 in any branch will immediately cause the whole

program to be abolished.

(v) Each branch has its own time, new branches being allotted one minute

as they are set up. Timing flags (150/1) in a branch apply to that

branch alone.

(vi) Different branches may monitor the same event in different styles.

It is insanitary for two branches to monitor the same event in style

7 with the same .jump address.

10.1.8 Branch names and directives

When a branch is set up it is given a job name composed of the original job

name together with the branch number e.g. BLOGGS2. The original job name

alone, typed with a directive will be taken to apply to branch 1 or, by

implication, to all branches, e.g. BLOGGS HALT will halt all

10.1

page 7

 29.11.65.

branches. The name BLOGGS1 is illegal. The directives which need a branch

number are MONITOR, OUTPUTON and ANSWER and TIME. All other directives

apply, implicitly, to the whole program.

A RERUN (see 5.3.10 and 5.7.2.2) directive will be accepted if a branch has

obeyed 150 0 2 10 instruction which causes OMP to temporarily unbranch

the program (i.e. the branch interlocks are remembered and all branches are

switched off awaiting Branch 1). If it is desired to restore the branch

interlocks a 150/25 may be used.

ENTER (with link) directive (see 5.3.25 and 5.7.3.4) causes OMP to “push

down” and to temporarily unbranch the program and to use Branch 1’s control

number as the link which is stored in the accumulator, say L, and to enter

the routine this being Branch 1. A 150/25 in the enter routine is used to

return and restore conditions e.g. 150 L 0 25 means pull up, restore

previous branch interlocks and set control number for this branch to [L]m

and OVR according to [L]s and current state of OVR. Any previous pushing

down and temporarily unbranched state are remembered.

ENTER (without a link) causes no “pushing down” and causes OMP to switch

off all branches awaiting Branch 1 and to forgot any temporarily unbranched

state and any previous “pushing down”. ENTER is allowed for branch 1 only.

10.1.9 Peripheral Incidents in branched programs

Peripheral incidents may be set dynamically by any branch of a program, but

the setting is taken to apply to the program as a whole. If the incident

occurs, OMP records the program as being “pushed down”, and temporarily

unbranches the program. If the link is required it uses Branch 1’s control

number. Any previous “pushing down” and temporarily unbranched state is

remembered. The routine to deal with the incident should normally end with

a 150/25 instruction which will pull up and return, restoring the

conditions to what they were before the incident occurred. For more

details see 5.3.25.

10.1

Page 8

31.10.1961

Appendix to 10.1

Example of branched program given in 10.1.6

Four input buffers and four output buffers.

IC1m + 1 = no. of buffers available to INPUT. IC2m + 1 = no. of buffers

awaiting processing by COMPUTE. OC1m + 1 = no. of buffers awaiting to be

output. OC2m + 1 = no. of output buffers available to COMPUTE.

COMPUTE (Branch 1)

 150 2 INPUTE 24

 150 3 OUTPUTE 24

 14 IC1 3

 13 IC2 1

 13 OC1 1

 14 OC2 3

COMPUTEE) 150 2 IC2 2

 64 -1+ IC2

Process next buffer

 10 IC1 1

 11 IC2 1

 10 OC1 1

 11 OC2 1

 150 3 OC2 2

 64 -1+ OC2

 75 COMPUTEE 0

E) 150 3 0 2

 65 -1+ OC1

Deal with end of file

 INPUT (Branch 2) OUTPUT (Branch 3)

INPUTE) Read into next buffer OUTPUTE) Print next buffer

10 IC2 1 10 OC2 1

11 IC1 1 11 OC1 1

150 1 IC1 2 150 1 OC1 2

64 -1+ IC1 64 -1+ OC1

Jump to INPUTE if not end of file

75 OUTPUTE 0

150 1 0 2

65 -1+ IC2

150 1 E+l 24

150 1 0+ 2

10.2

Page 1

9.3.1962

Examples of the Use of the 101 Instruction

This section contains a number of detailed examples

illustrating how various types of radix conversion operations can be

performed by the 101 instruction. For a specification of the 101

instruction and the notation used see section 3.10.

If a number, when converted, can be represented by-eight

characters or fewer, it can usually be converted by a single 101-

instruction, provided that the radices are all integers.

Example 1

If the number in A1 is a binary integer in the range

-9999999 ≤ (A1)I ≤ 99999999 (-10
7+1 ≤ (A1)I ≤ 10

8-1) it can be converted to

characters by

 101 CHARS RAD A1

with the program constants

RAD) +100000000

 10,10,10,10,10,10,10,10+16

the +16 in the last radix-character ensuring that zero is converted as 0.

Example 2

If (A1)I represents pence of a sterling quantity in the range -

£99.19.11 to £999.19.11 inclusive, then it may be converted to characters

with minus-sign if negative, and with full stops between pounds, shillings

and pence by

 101 CHARS STERL A1

with

STERL) +240000

 10,10,10+16,1+32,2,10,1+32,12

This will convert a zero in the 10/- column as SP; to convert it as 0 the

5th radix should be 2+16.

Note that in these two examples, y is the product of the

radices (i.e. y = ∏ ri); this is true generally when converting an integer

to eight or fewer characters. Note that it is not possible to use the 101-

function unless all radices are integral, e.g. to convert ounces to

quarters, pounds and ounces would require radices such as 2.8 and 1.6 which

cannot be produced.

10.2

Page 2

9.3.1962

A case in which y is not the product of the radices is that of

converting a binary fraction to characters.

Example 3

If, in A1, is a non-negative fraction, it may be converted for printing, to

6 decimal places preceded by 0. Thus:-

 51 A1 1

 00 A1 RD

 101 NUM CON A1

with

 RD) +0.00000025

 CON) 31,63,63,63,63,63,63,63

 2+16,1+32,10,10,10,10,10,10

The word CON) is 01147 = 1.0-2-47, i.e. it is the best single-length

approximation to +1.0 attainable. (A1) is shifted down 1 place to prevent

the possibility of overflow (a) on adding the rounding constant which is in

RD) and (b) on dividing by 1.0-2-47. This shift is compensated by giving

the first radix r0 the value 2. This first radix forces a zero which is

converted as 0 (because +16). The second radix (l) also forces a zero

which is converted as full-stop (or decimal point). Thereafter, the digits

proper are produced. Note that since the 0 produced by the radix -

character 2+16 is treated as significant, β being set, therefore any left-

hand zeros in the fraction will be converted as numeral 0 and not as SP.

If the converted form has more than 8 characters, a single 101-

instruction is not sufficient.

Example 4

Assuming that A1 contains any single-length integer, convert it

for output.

FIRST) 14 NUM 0 | Clear NUM

 101 NUM+1 CON A1 | Convert l.s. 8 bits

 66 FIN 4 | Test OVR, if clear, FIN

 40 A1 CON | if (A1) ≥ 108, divide by 108

 65 SEC A1 | Jump if quotient ≥ 0

 60 SEC A2 | Jump if remainder = 0

 81 SEC A1 | if <0, add 1 & test if ≠

 14 NUM 30 | if =0, put minus sign in NUM

 75 0 | and exit

CON) +100000000 | 108

 10,10,10,10,10,10,10,10+16

SEC) 101 NUM CON A1 | convert m.s. 7 digits

FIN) 75 0 | and exit

10.2

 Page 3

 9.3.1962

The first 1O1-instruction produces the l.s. 8 digits in NUM+1.

If the number occupies more than eight characters OVR is set, β is set and

θ left clear. OVR is tested and left clear by the 66-instruction; if the

number occupies 8 characters or fewer, OVR is clear, the conversion is

completed by the one 101-instruction and so the 66-instruction causes a

jump to the exit point. Otherwise the number is divided by 108. The

quotient in A1 corresponds to the m.s. digits and the remainder in A2 to

the l.s. 8 digits.

If this quotient is non-negative, it can be converted directly

by a second 101-instruction: the 65-instructicn tests for this case. If

the quotient is negative, it may be that all the l.s. 8 characters are

zeros (i.e. the number is an integral multiple of 10). If so, the m.s.

characters can be directly converted by a second 101-instruction. This

case will be indicated by a zero remainder on division by 10, which is

detected by the 60-instruction.

The 81-instruction is obeyed if the integer is negative and

converts to more than 8 characters, i.e. N ≤ -108. Suppose in fact,

N=-(l08a+b) where a and b are integers. Then when N is divided by 108 (in

the 40-instruction) the quotient will be -(a+l) and the remainder 108-b.

The digits of b have been correctly converted by the first 101-instruction

and thus it is necessary to add 1 to the quotient and convert the result.

In fact if, on adding 1 to the quotient, the result is zero, it follows

that OVR was set only because b has eight digits and the minus sign could

not be inserted into NUM+1. In such a case the 81-instruction does not

cause a jump, the minus sign character is put in the l.s. end of NUM and

the sequence left. Otherwise a second 101-instruction is obeyed,

converting the m.s. digits and inserting the minus sign automatically.

Example 5

To convert a sterling quantity in the range

-£9,999,999,999.19.11 to £99,999,999,999.19.11 inclusive, held

as pence in A1.

 14 NUM 0

 101 NUM+1 CON A1

 66 FIN 4

 40 A1 CON

 65 SEC A1

 60 SEC A2

 10 A1 1

 61 SEC A1

 14 NUM 30

 75 0

CON) +240000

 10,10,10+16,1+32,2,10,1+32,12

 +100000000

 10,10,10,10,10,10,10,10

SEC) 101 NUM CON+2 A1

FIN) 75 0

10.2

Page 4

9.3.1962

The reasoning behind this sequence of instructions is similar

to that for Example 4. Note that the 81-instruction of Example 4 is

replaced here by a 10-instruction and a 61-instruction. This is because,

if a sterling quantity in the given range is divided by 240000 the quotient

may exceed 24 bits and thus cannot be tested completely by an 81-

instruction.

Example 6

Given a signed fraction P in A1 , convert it to 13 decimal

places, preceded by SP0. if positive or by -0. if negative, allowing also

for the case of -1.0000000000000

In this method of solution the two multiplication instructions

are used to transform the fraction into two integers, that in A1

representing the five m.s. decimal places and that in A2 representing the

l.s. eight decimal places. The first radix, 1, in CON+1 serves to force a

zero, converted as SP in which the minus sign may be set when appropriate.

 14 A3 0 | Clear A3

 65 BB A1 | Test if F ≥ 0

 66 BB 10 A1 | If < 0, test if F=-1.0

 12 A1 0 | If ≠ -1.0, negate fraction

 115 A3 30 | and put minus-sign in A3

BB) 32 A1 CON+4 | Multiply F by 105

 31 A2 CON+2 | Multiply l.s. half by 108, rounded

 61 CC CON+2 A2 | Test if latter product = 108

 10 A1 1 | If so, add 1 to m.s. digits

 14 A2 0 | and clear l.s. digits

CC) 101 NUM CON A1 | Convert m.s. digits

 101 NUM CON+2 A2 | Convert l.s. digits

 00 NUM A3 | Add sign if F negative

 75 O | Exit

CON) +200000

 1,2+16,1+32,10,10,10,10,10

 +100000000

 10+16,10,10,10,10,10,10,10

 +100000

