
7.1.0

Page 1

1.2.65

7.1 Basic Input
7.1.1 Character set of Basic Input
7.1.2 Uses of Basic Input Routine
7.1.3 Language of Basic Input
7.1.4 Formats of Basic Input

7.1.4.1 Storable words
 .1 [number]
 .2 [fraction]
 .3 [instruction]
 .4 [name]

7.1.4.2 Directives abolish 7.1.4.2.7
 .1 [normal directives] B - .16
 .2 [read directive] c - .20
 .3 [reserve directive] Checks X & Y .11
 .4 [new directive] compiler . 5
 .5 [compiler or use directive] end .18
 .6 [report directive] enter .12
 .7 [abolish directive] f - .18
 .8 [f directive] free .14
 .9 [pull up directive] jump .13
 .10 [process directive] monitor .21
 .11 [check directive] new . 4
 .12 [enter directive] normal . 1
 .13 [jump directive] process .10
 .14 [free directive] pullup . 9
 .16 [B-directive] q - .19
 .17 [time directive] read . 2
 .18 [end directive] report . 6
 .19 [q-directive] reserve . 3
 .20 [c-directive] scratch .24
 .21 [monitor directive] signal .22
 .22 [signal directive] time .17
 .23 [unsignal directive] unsignal .23
 .24 [scratch directive] use . 5

7.1.4.3 Sequences
 3.2 [nest sequence]
 3.3 [call sequence]

7.1.4.4 Labels, equations

7.1.4.5 Composition of a Basic Input Language Program
 5.1 [unit of Basic Input]
 5.2 [item]

7.1.5 The program

7.1.6 Errors

7.1.7 Restarts

7.1.1

Page 1

 1.2.65

7.1.1 Character Set

Basic Input Language is in characters. The characters used are

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

= . () * + - , /

VB (visible space)

Dummy (always ignored)

EL (end of line)

Several VS characters are equivalent to one VS

ER character is everywhere ignored.

| (vertical bar) means “ignore rest of this line”.

When a sequence of Basic Input Language is on magnetic tape or
drum, the characters are represented directly (internal
representation); on paper tape or cards, the characters are
represented by the print-out of the tape or cards.

7.1.1.1 Magnetic Tape and Drum

For Basic Input Language programs on magnetic tape or drum, the
code is the standard internal code (see 5.6.l).

Basic Input Routine reads the characters from each word, starting
at the m.s. end.

Magnetic tape blocks must be less than 130 words long, with the
length of each block as a binary integer in the l.s. 15 bits of
the first word of the block (Word 0). The Basic Language
characters begin in Word 1 unless the magnetic tape is a composite
document (see 6.1).

7.1.1.2 7-track paper tape

For Basic Input Language programs on 7-track, the 7-track code is
used (see 4.3..3).

Lower case and upper case letters are regarded as equivalent. BS
is allowed. Crossed parentheses mean “ignore this line” and all
printing characters, except cross parentheses, to the right of
vertical bar are ignored. Unassigned characters are ignored.

7.1.1.3 5-track paper tape

For Basic Input Language programs on 5-track code is used (see
4.3.3). See 7.1.5.3 for 5-track conventions.

7.1.2

Page 1

 1.2.65

7.1.1.4 Cards

For Basic Input Language programs on cards, the standard card code
(see 5.6.2) is used.

7.1.1.5 End of line

On paper tape, EL is considered to appear immediately after the
last printing symbol on the line

On cards the convention is that one card represents one line.

7.1.2 Uses of Basic Input Routine

7.1.2.1 The purpose of this routine is to

 (i) Assemble and store a program on the drum ready to run, with
appropriate parameters, if necessary.

and (ii) Set up initial conditions for the program particularly to reserve
core and drum store and peripheral devices and to ensure that the
right documents are loaded.

The Basic Input Language to be read may be on 7-track , 5-track
paper tape, cards, magnetic tape and the drum.

7.1.2

 Page 2

 1.2.65

7.1.2.2 Identifiers

Two types are provided known as the L’s and the V’s. An
identifier may be referred to in an “address—field”; when this
field “comes to be stored” the current value of the identifier is
used. An identifier is set either “by label” or “by equation”.
(See 7.1.4.4)

7.1.2.2.1 The L’s

e.g. L65 or L1.1

An L is set to have a value; this is a 24-bit signed quantity.

Basic Input Routine makes a list of the L’s and their values. It
stores them in blocks of 64 and an L may be written as Lb.p where
b is the block and p the position number. e.g. L65 and L1.1 refer
to the same L.

If an L is referred to, then Basic Input Routine appropriates 64
words of working space for the L’s within that block. There is a
limit of 512 blocks.

An L may be in 4 states

(i) Never heard of
(ii) Referred to but not set
(iii) Partially set
(iv) Fully set (known)

References are forward references unless the L is in state (iv)

Unless an L is in state (i) or (ii), a setting of the L is an
error. There are facilities for freeing an L and for nesting an
L.

7.1.2.2.2 The V s

e.g. V5

The value of a V is the 48-bit content of the corresponding
register and hence the value of a V is always known. A V may be
re-set.

The V’s are special purpose quantities used by Basic Input
Routine.
V1 (stored in A1). Its value is the drum transfer address.
V2 (stored in A2). Its value is the core transfer address.

When Basic Input Routine reads a “storable” word to be stored in
one word then V1 and V2 are stepped on by 1 (see 7.1.4.l)

7.1.2

 Page 3

 1.2.65

V0 has the value 0, but when set it causes V1 and V2 to be moved
in step. For example, if the old value of V1 is 2 and V2 is
A64, then

 V0=A74 (i.e. X)

gives new value of V1=12 (i.e. X - V2 i.e. A74-A64+2)
and V2=A74 (i.e. X)

V3 to V12 (stored in A3 to A12). These V's are not disturbed by
Basic Input Routine in its purpose of storing program on the
drum, unless it reads a setting of them, in which case the
corresponding accumulator will contain the required value.

V13 is used for the checksum.

V62 gives the current input channel; if D0 is 1 , then the input
channel is the drum.

V64 is the type of print barrel (see section 14 and 7.1.4.2.1 2).

V65 is the datum point.

V66 contains 2 constants for use by Autocode (see 7.1.5.l)

If a V is referred to in an “address-field”, then the current
value is used.

7.1.2.3 Example settings (see 7.1.4.4)

L258) V5) core label settings; each identifier is given the
value of the current core transfer address.

L51.3))V4)) drum label settings; each identifier is given the
value of the current drum transfer address.

L1 = 63
L713 = A52+L3
V2 = V2+16
V11 = -4002

L3.2 = V5 the l.s 24 bits of the value of the V are the new
value of the L.

V3=L6 the new value of the V is numerically equal to the
value of the L.

7.1.2.4 A nest and equivalent facility is provided to be used in
conjunction with calls. This allows the current status of all L’s
(and some V’s) to be remembered and the identifiers freed for use
by, for example, a called document and then later restored (nest
facility) and also for specified identifiers of the new set to
become identified (equivalenced) during nesting with specified
identifiers of the nested set.

7.1.3

Page 1

 1.2.65

7.1.3 Language

7.1.3.1 Format Descriptions

A class is denoted by listing the members, separated by commas, as
strings of class-expressions.

A class-expression is made up of class names and characters using
the special symbols

() [] < > , * ? = %

7.1.3.2 A class name is any set of characters except * ? [] enclosed in
square brackets. Parentheses are used for grouping and separation
where required. The equal sign denotes a definition of a class
name. Null is the empty class. % is used to terminate a
definition.

The characters * and ? have special meanings defined as follows:-

(a) if m is any class - expression
m? = m, null % (i.e. one or nothing)
m* = m, (m*), m % (several or at least one)
m*?= (m*)? % (several or one or nothing)

(b) if [m] is any class name
[m?] = [m]? %
[m*] = [m]* %
[m*?]= [m]*? %

Associated with each * there may be an expression like 3, <6, or = 4
which indicates the range of the number of repetitions allowed.

7.1.3.3 Preliminary Definitions

Some class names, e.g. [left parenthesis], [asterisk],
[directive], [sequence] are taken as understood without definition

[l] = A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z %

[d] = 0,1,2,3,4,5,6,7,8,9 %

[±] = +, - %

[n] = [d*] %

[peripheral name] = [asterisk][l][l][n] %

[style name] = [asterisk][l][l][l] %

7.1.3.

 Page 2

1.2.65

A peripheral name is stored in a 15 bit field. Each letter is
converted into a 5-bit quantity by removing the m.s. bit of the 6-
bit character. The 2 truncated letters are packed into the m.s.
10 bits of the field. The number [n] is added into the field.
E.g. *SR1 is stored as 20033

A style name, e.g. *SIG, is stored in a 15 bit field; the letters
are truncated as described above and then stored.

7.1.3.4 Elements

 (i) [element]=((V,L)*?)[n](.[n]*?), [m]%

where [m]=[peripheral name], (A?)[n], [style name]%

Examples are V4 and L20 and 2 and L1.36 and 100.3.. and *MT1 and
A7.

The appearance of . (point) in an element causes the numerical
part of the element already read to be shifted up 6 bits, e.g.
L1.0 is an alternative way of writing L64.

V or L appearing in an element causes the value (see 7.1.2.2) of
the corresponding identifier to be looked up when a terminator is
found; thus forward references in an element are not allowed.

A string of V’s and L’s may appear, e.g. LV7 giving effectively
indirect addressing of identifiers.

 (ii) [gen element] = (L?)[element]%

If the first character is an L then forward references are
allowed.

7.1.3.5 Quantities and Fields

 (i) [quantity]=[element]([comma]([±?][element]?),[±][element]*?) %

 (ii) [field]=[quantity],([quantity]([±],[comma])?)[gen element]([±]
[gen element]*?)%

Examples are as for elements and V2-L1 and L1.2+60 and 5,,,,*CR1
and 10,10,10+16,1+32,2,10,1+32,12

+ (plus) and - (minus) have arithmetical meaning, e.g. 10+16 is
equivalent to writing 26.

The appearance of comma in a quantity causes the elements already
read to be shifted up 6 bits. Thus the storable line (see
7.1.4.1)

+21,6,L7,12,,,,

will cause the 4 elements to be packed into the top half of the
word.

No forward reference may appear before a comma in a field.

7.1.3

 Page 3

 1.2.65

7.1.3.6 Components and Documents

 (i) [component]=((VS?)([l],[d],.)*<9),((VS?)[asterisk]*<3?)%

Examples are ABC.12 and **

The character VS is ignored when reading a component. A component
is stored in a word with the characters right-justified.

The component * causes today’s date to be stored as that
component. This is the date in characters as given by the 150/12
instruction (see 5.3.12), e.g. 3lMAR64.

The component ** causes the time to be stored in character form,
e.g. 11.05.59

 (ii) [doc name]=[component]/[component](/([component],+)*<7?)%

Example ONE/DOCUMENT/+/1.2.63/VERSION2/ABC.12

The character + (plus) as a ‘component’ of a document name means
that the document is composite (see 6.1). It cannot be the first
or second component.

(iii) [doc request name]=[component]/[component](/([component],+,-)*<7?)%

Example MY/DATA/-/XYZ/-

In a request for a document at least the first 2 components must
be specified (i.e. - (minus) cannot be the first or second
component). - (minus) means “don’t care what this component is”.
If the last specified ‘component’ is - (minus) then this means
“don’t care what further components are”.

 (iv) [source name]=[doc request name],+[quantity],[peripheral name]%

where +[quantity] is taken as a drum address.

7.1.4.1

 Page 1

 1.6.65

7.1.4 Formats

The purpose of Basic Input Routine has already been stated (see
7.1.2). Those lines of a program which cause B.I.R. to store
information on the drum for the running of the program are called
storable words. Those lines of a program which direct B.I.R. to
for example, reserve a reader for the program are called
directives.

7.1.4.1 Storable Words

The formats of storable words are defined. When B.I.R. reads such
a line, one word of information is stored and the transfer
addresses both stepped on by one.

Any of these formats may be preceded by one or more core-labels or
drum-labels or both as defined in 7.1.4.4.

There are 4 types of storable words.

7.1.4.1.1 A number

[number]=[±][field]%

Examples are

-2561
+1346895
+L157
-L1.6+V3
+10+16,10,10,1+32,2,10,1+32,12
-134567,L3.1-2,,
+33.34.35.36.37.38.39.40

The number is stored as a 48-bit signed integer. Overflow may
occur if the integer is not in the range ±(247 -1).

If an L is written, then it is regarded as a 48-bit integer whose
value is numerically equal to the value of the L.

7.1.4.1.2 Fraction

[fraction]=[±](0*?).[n]F%

e.g. +0.333F
-.4123F

The [n] must be in the range 0 ≤ n ≤ 1014-1

The fraction -1.0 or integer -247 can be stored by using the
instruction format. 00 0 0 0

7.1.4.1

Page 2

 1.6.65

7.1.4.1.3 Instruction

[instruction]=[fun][adr*<4?]%

where

[fun]=[n](.[n]?)(X?)(Y?)(S?)%

[adr]=VS[left parenthesis?][±?][field][right parenthesis?]

In the function [fun] if a mode (e.g. for a 141 instruction) is
present, the Y-address will unless replaced be distributed over X-
and Y-address fields.

The X, Y and S denote X- and Y- modification and signal bit
respectively.

Addresses are in the order X-address, Y-address and Z-address. If
fewer than three addresses are written the remaining address-
fields are stored as zero. A left parenthesis denotes
replacement; the right parenthesis, if present is always ignored.
The Z-address may not be replaced. If the Z-address is not
written the instruction is a 2—address unmodified instruction and
the TX bit will be set unless Y and not X appeared in the function
part.

Examples

04XY (L16) V3+L1.2-12 A4

140.1 0 *SR1
142S L3.8+20 24

14 L3 -5

7.1.4.1.4 Name format

[name]=NAM[l*?]VS([doc name],[doc request name])%

e.g. NAME A/NAME/A.B.1/*
 NAME A/REQ12/-/XYZ/-
 NAME A/REQ12/-/XYZ/-/

The name is stored at the current value of the transfer addresses
into 8 words. One component (see 7.1.3.6) is stored in a word.
Not all 8 components and corresponding solidi need be specified.
For a specified component, the corresponding word contains the
characters, if less than 8, right-justified. Unless the last
character on the line is - (minus), then for non-specified
components the corresponding words will be clear. If the last
character is - (minus) then all subsequent words will contain
character - (minus) at the l.s. end. Thus in the second example
the last 4 words of the 8 will all contain - (minus) and in the
last example the last 3 words will be clear.

7.1.4.2

 Page 1

 24.12.64

7.1.4.2 DIRECTIVES

7.1.4.2.1 Normal directive

[normal directive]=NOR[l*?]%

This has no effect except to terminate sequences (see 7.1.4.3)

7.1.4.2.2 Read directive

[read directive]=REA[l*?]VS[source name],[component]%

A line with this directive must be followed by a separator (see
7.1.5.4 and 7.1.5.5)

This directive causes Basic Input Routine to

(i) relinquish the current input peripheral, unless it is the
drum or a RESERVE THIS directive has been read; (i.e. if the
number in the programmer’s peripheral name of the current
input peripheral is 20 or above, Basic Input relinquishes
it). If the current input peripheral is a tape deck and the
document on it is composite, the tape is left in the load
position.

and (ii) to continue reading from the specified source, if a [source
name] is specified (see 7.1 3.6) or to load and enter the
semi-built-in program if a [component] is specified.

(a) If [source name] is [doc request name]

e.g. REA MY/PROGRAM/MK5/-

then Basic Input Routine finds the document and continues by
reading it.

The device on which the document is loaded, is reserved for
the job (the number in the programmers peripheral name being
20 or above). The document may be one on a composite
magnetic tape document (see 6.1) in which case Basic Input
will find the document on the composite one and read it.

(b) If [source name] is +[quantity]

e.g. REA +16

then the quantity is the drum address from which Basic Input
will start reading.

(c) If [source name] is [peripheral name]

e.g. REA *SR1

then Basic Input implements the reservation request for this
peripheral, and then reads the document on it.

It is permitted to write for example

REA *0+V3 (0 is zero)

where 0+V3 is taken as a peripheral name.

7.1.4.2

Page 2

 24.12.64

(d) If a [component] is specified then it is the name of a semi-
built-in program (see 6.3)

e.g. REA PRINT

Basic Input will load and enter Chapter 1 of this semi-
built-in program.

7.1.4.2.3 Reserve directive

[reserve directive]=RES[l*?]VS(([peripheral name]VS
([doc name],[doc request name],THIS)),([asterisk]CORE,
[asterisk]DRUM)VS[quantity])%

This directive is used for reserving peripherals core and drum
store for the program.

(i) Peripherals

The number in the programmer’s peripheral name should be below 20.
The reservation request is remembered when read and is implemented
when ENTER directive (see 7.1.4.2.12) or PROCESS directive (see
7.1.4.2.10) is read. The peripheral is reserved and a specific
device allocated. For slow input devices and magnetic tape decks,
READ [peripheral name] also causes the reservation request to be
implemented. If at the time of implementation no device of the
required type is free then the job is halted awaiting space.

(i) (a) Slow Input devices and magnetic tapes

e.g. RES *SR1 MY/DATA/-

The [doc request name] specifies the document to be found
and the [peripheral name], the type of device required.

For documents on magnetic tape, Basic Input Routine will
find a document on a composite document (see 6.1) - it will
read the name block and position the tape ready to read the
first block of information of the document.

USE OF THIS

e.g. RES *SR2 THIS

The current input peripheral is reserved for the job, with
in general the number in the programmers’ peripheral name
being 20 or above. This directive asks Basic Input to
change its name to that specified (it will be of the same
type and the number must be below 20). When subsequently
Basic Input finishes reading from this peripheral, the
peripheral will still be reserved for the job; when Basic
Input reads certain directives (e.g. READ, ENTER, END) it
relinquishes the current input peripheral if the number in
the programmer peripheral name is 20 or above.

(i) (b) Slow Output Devices

e.g. RES *LP1 MY/RESULTS/*/**

The [doc name] specifies the document name which is to be
output on the allocated device.

7.1.4.2

Page 3

 5.11.65

(ii) Core Store

e.g. RES *CORE 200

The [quantity] specifies that at least this number of words of
core are to be reserved. The number of words reserved is of the
form 64n-l6.

(ii) (a) Decreasing core reservations

In this case Basic Input will remember the request and
implement it on reading ENTER (see 7.1.4.2.12) and the datum
point remains unchanged.

(ii) (b) Increasing core reservations

In this case, the directive must be followed by a separator
(see 7.1.5.4 and 7.1.5.5). This request is implemented on
reading the directive and the datum point may be changed and
so generally the request should appear before any storable
words. Basic makes use of the extra core.

If the amount requested is not available, the job is halted
awaiting space; the message being NO CORE.

Note that core may be reserved with JOB directive (see 5.7.2) in
which case, RES *CORE directive need not be used. Only one
request for core is advisable.

(iii) Drum Store

e.g. RES *DRUM 1000

The quantity specifies a number of words of drum; it is
rounded up to the next multiple of 64, unless it is a
multiple of 64 already.

The directive is implemented on reading it. When the
program is entered, then the amount of drum reserved for the
program is the greater of

The amount requested with the last directive read (this is
64 if no RES *DRUM has been read) (see 7.1.4.2.16).

or V1 (rounded to a multiple of 64).

The job may be halted awaiting space, if the drum required
is not available, the message being NO DRUM.

7.1.4.2.4 New Directive

[new directive]=NEW(VS[n]?)VS[asterisk]MT[n]VS
 (((P?)[n].[n].[n](P?)(L?)VS[doc name]),0)%

E.G. NEW *MT1 P1.8.1965 B/C/*/**

This directive is implemented when ENTER (see 7.1.4.2.12) or
PROCESS (see 7.1.4.2.10) is read.

7.1.4.2
 Page 4

 5.11.65

If the peripheral (*MT1 in the example) has not already been
reserved, then it is reserved, a scratch tape (see 5.3.33 b (ii))
being allocated. If (VS[n]?) is present then this integer
specifies the nominal length in hundreds of feet of the scratch
tape required, otherwise any lengthed tape is requested. If the
peripheral has already been reserved then no reservation takes
place.

The other information given with the directive gives new Block 0
information.

The first (P?) gives the setting of the write permit bit (D0) and
the second (P?) gives the date control bit (D24). P present means
set the bit to 1; P not present means set the bit to 0.

[n].[n].[n] specifies the Date (in D1 to D20) required; the first
[n] specifying the day, the second the month and the third the
year. If the third [n] is less than 100 then 1900 is added to it
and stored as the year, so that 65 is stored as 1965.

[doc name] specifies the new document name required.

(L?) - this will be used only on installations with high density
decks, when a high job needs to write low density tapes. (L
present causes D25 of the first word for the 150 instruction to be
1, otherwise 0)

In the case of NEW directive Basic Input Routine writes this Block
0 information onto the tape with a 150/41 instruction.

The directive NEW *MT1 0 (this is zero) gives new Block 0
information such that the tape is considered a scratch tape.

7.1.4.2.5 Compiler or Use Directive

[compiler or use directive]=(USE,COM)[l*?]VS([source name],[component])%

This directive needs a separator (see 7.1.5.4 and 7.1.5.5).

This directive differs from the READ directive (see 7.1.4.2.2)
only in that the current input peripheral is not relinquished and
that on reading END Basic returns.

If a [component] is specified then Chapter 1 of the named semi-
built-in program is loaded and entered.

e.g. USE PUNCH

If [source name] is specified, then Basic Input Routine continues
by reading from the specified source. If END directive (see
7.1.4.2.18) is read on the requested document or drum or on the
document on the specified peripheral, then Basic Input Routine
returns to read from the peripheral on which it read the USE
directive. (Note that READ does not cause this to happen).

USE MY/NEXT/TAPE/3/-
USE +36

While reading the requested document etc, Basic stores the name of
the peripheral to which to return in A61 (i.e. if V61 is positive,
it is the programmers peripheral name; if negative the modifier is
the drum address.)

7.1.4.2

 Page 5

 24.12.64

7.1.4.2.6 Report Directive

[report]=REP[l*?]VS[n]VS([peripheral name]VS[doc name]),
 ([n]VS[doc name])?)

e.g. REP 2 *SP1 MY/MONIT/*/**

While Basic Input Routine is reading the program it may output
various reports. In general a monitoring peripheral is necessary
for these reports, so on reading this directive Basic Input will
reserve (if not already reserved) a slow output peripheral with
the specified programmer’s peripheral name and on the allocated
device will output the specified document name. This output
peripheral is set as the monitoring peripheral for the program and
the report level (the first [n]) which will be either 0,1 ,2, or 3
will be set.

e.g. REP 0 5 MY/OUTPUT/*

Instead of a programmer’s peripheral name an integer (e.g. 5) may
be written which means, get the first free slow output device and
reserve it with appropriate programmer’s peripheral name, the
number being that given. (In the example if the first free slow
output device were a 5-track punch, then it would be reserved for
the program as *FP5 and the specified document name would be
output on this device set as the monitoring peripheral). If the
job already had a slow output peripheral reserved with the
specified number (5 in this case,) then another peripheral would
not be reserved but this peripheral would be set as the monitoring
peripheral and the document name would be output.

e.g. REP 0

This makes the Flexowriter the monitoring peripheral. On the
Flexowriter report level 0 is allowed only.

Report Levels

Level 0

If errors (see 7.1.6) occur then only one is given. If ENTER
directive is read then only one unset, if any, identifier is
given.

Level 1

If errors occur then up to 15 may be given. If ENTER directive is
read, then all, if any, unset identifiers are given and a message
is printed on the monitoring peripheral just before entering the
program, giving the enter number, the time and the date.

Level 2

Level 1 reports are given. If ENTER directive is read, then the
values of all the L identifiers set are also given; this printout
also includes the block and position form of the L number and is
in a form suitable for re-input.

7.1.4.2

 Page 6

 24.12.64

Level 3

Level 2 reports are given. This level causes the old values of
identifiers to be printed whenever they are cleared with a C
directive.

If no REPORT directive is read then the Flexowriter is the
monitoring peripheral, and report level 0 reports are given.

7.1.4.2.7 Abolish directive

[abolish directive]=ABO[l*?](VS[n]?)%

This causes Basic Input to stop reading and abolish the job. The
number, if written will be printed (see 5.3.1l)

7.1.4.2.8 F directive

[f directive]=FVS[n]VS[n]VS[±?][field]%

e.g. F 12 24 L491

This directive is used to adjust the word in drum location whose
address is V1-1. The first number (a say) and the second number
(b say) specify a field in this word. (Bits in a word are D0 to
D47). The field is Dj to Dk where

 k = 47-b

and j = k-a+1

The value of the field expression which follows is added into this
specified field (modulo the size of the field). Any number of F
directives may follow a storable word.

In the above example the value of L491 is added into D12 to D23 of
the word in drum location V1-1 (this usually the previous storable
word).

7.1.4.2.9 Pullup directive

[pullup directive]=PUL[l*?]%

See NEST sequence 7.1.4.3.2. This causes Basic Input to lose the
current set of L’s and restore the nested set.

7.1.4.2

 Page 7

 1.2.65

7.1.4.2.10 Process directive

[process directive]=PRO[l*?]%

This directive needs a separator (see 7.1.5.4 and 7.1.5.5)

CALL sequences (see 7.1.4.3.3) are remembered until PROCESS is
read, when they are implemented. Basic Input Routine reads the
“called” documents in the order in which it finds them. (Where a
document is to be stored may be specified with the CALL sequence
(see 7.1.4.3.3)). The “end” of a document is the END directive
(see 7.1.4.2.18). After reading the last “called” document Basic
Input Routine returns to read from the peripheral on which it read
PROCESS.

The peripherals on which the “called” documents are loaded are
reserved for the job with the number being 20 or above.

This directive will find a document on a composite magnetic tape
document.

This directive insists upon reservation requests for peripherals
(see 7.1.4.2.3) being implemented before returning to read from
the current source.

7.1.4.2.11 Check directives

[check directives]=(X,Y)VS[±?][quantity]VS[±?][quantity]%

X-directive

X L1 4

This directive checks that the two quantities are equal. If so,
the next Unit of Basic Input (see 7.1.4.5.1) is skipped, otherwise
not.

Y-directive

e.g. Y 10 V3

This directive checks that the two quantities are unequal. If so
the next Unit of Basic Input (see 7.1.4.5.l) is skipped, otherwise
not.

7.1 4.2

Page 8

1.2.65

7.1.4.2.12 Enter directive

[enter directive]=ENT[1*?]VS[quantity]%

e.g. ENTER 1

This directive needs a separator (see 7.1.5.4 and 7.1.5.5). It
causes Basic Input to stop reading and enter the program. Before
entering the program Basic Input

 (i) relinquishes the current input peripheral if the number in
the programmer’s peripheral name is 20 or above, (see RES
THIS directive see 7.1.4.2.3). If the document read is one
on a composite document then the tape is left loaded.

 (ii) implements the reservation requests for peripherals, the
order of implementation is RES, NEW, SCR, and core store, if
being decreased (see 7.1.4.2.3).

(iii) implements the monitoring conditions (see 7.1.4.2.2l).

 (iv) sets the timer to number of minutes specified with the TIME
directive (see 7.1.4.2.17). If this directive has not been
read, by default the timer is set to 1 minute.

 (v) Depending on the report level, (see 7.1.4.2.6) information
about the L identifiers is output. If the report level is
>0 then a message on the monitoring peripheral will output
to indicate when (the time and date is given) the program
was entered.

e.g. ENTERED 11.05.57 1FEB65

 (vi) looks at V64. If it is zero or positive Basic Input will
give up its drum working space. If it is negative the lists
of L’s and their settings will be preserved on the drum.
Unless altered by the programmer, V64 is zero or positive;
this number indicates what type of print barrel this
installation has (see section 14).

(vii) The core store from A66 onwards is cleared, if V64 is not
negative then the program is entered. The quantity
represents an integer (n say) which is the entry-point of
the program. Drum locations whose address are 2n and 2n+l
should contain the chapter change pair. (i.e. a 150/50
instruction (see 5.3.50)).

A suitable chapter change pair may be written, for example
as

150 L1 L2 50
00S L3 L4 0

if it is known that the drum address L3 is less than 215.

7.1.4.2

Page 9

1.2.65

7.1.4.2.13 Jump directive

[jump directive]=J(VS[quantity]*=4)%

e.g. J Ll6 L29 L2.1 L41

This causes Basic Input to stop reading and enter an interlude
(see 7.1.5.2). The first quantity is the drum address, the second
is the core store address, the third is the number of words and
the fourth is the jump (entry) address for a chapter changing
150/50 pair.

The interlude is brought down and obeyed. The last instruction of
the interlude is usually a 150/51 instruction which calls in
chapter of Basic Input to continue reading more program in Basic
Input Language.

Unless return is to Chapter 19 (see 7.1.5.2) this directive needs
a separator (see 7.1.5.4 and 7.1.5.5)

7.1.4.2.14 Free directive

[free directive]=SVS[element]%

e.g. S 1

The [element] specifies a block of L’s. The 64 L’s of this block
are freed (unset). No checks are made. These L’s can then be
reset. In the example, L64 to L127 inclusive will be freed.
(i.e. these L’s will be in state (i) see 7.1.2.2.l)

7.1.4.2.16 B directive

[B-directive]=B(VS[n]?)%

This causes Basic Input to stop reading and call in Binary and Map
Input (see 7.3). This directive causes drum to be reserved - it
is treated as though a RES *DRU directive had been read (see
7.1.4.2.3(iii)).

7.1.4.2.17 Time directive

[time directive]=TIM[l*?]VS[n]%

e.g. TIME 25

The [n] specifies the number of minutes the timer is to be set
just before the program is entered (see 7.1.4.2.1 2). Number of
minutes specified must be less than 547.

7.1.4.2.18 End directive

[end directive]=END%

This directive needs a separator (see 7.1.5.4 and 7.1.5.5).

In general it is used to terminate documents. Directives which
may ask Basic Input to find and read these documents are USE (see
7.1.4.2.5) and PROCESS (see 7.1.4.3.3 and 7.1.4.2.10).

7.1.4.2

Page 10

1.2.65

On reading END on a document which it has been asked to read by
USE, Basic Input returns to read from the peripheral on which it
read the USE directive; this is stored in A61.

On reading END on a document which it has been asked to read by
PROCESS, Basic Input returns to implement any other call sequences
and finally returns to read from the peripheral on which it read
the PROCESS directive.

As Basic Input finishes reading one of these documents it
relinquishes the peripheral on which the document is loaded (if
the number in the programmers’ peripheral name is 20 or above).
If the document read is on a composite document (see 6.1) then
when relinquishing the magnetic tape Basic Input leaves the tape
loaded.

END at the highest level causes the job to be suspended awaiting
rerun.

7.1.4.2.19 Q directive

[q-directive]=Q(VS?)[element]%

e.g. Q 2

The [element] specifies an L (in the example L2). Basic Input
Routine skips the next Unit of Basic Input (see 7.1.4.5.1) if the
L

(a) is set and its value known; i.e. if the L is in state (iv)
see 7.1.2.2.1

or (b) has not been mentioned (at least not since it was last
freed); i.e. if the L is in state (i).

Thus if the L is in state (ii) or (iii) this directive does not
skip.

7.1.4.2.20 C directive

[c-directive]=CVS[element]VS[element]%

e.g. C 5 10

This frees (unsets) all the L’s between the L specified by the
first element and that specified by the second element inclusive.
In the example L5 to L10 are freed. It also checks, for each L
that there are no forward references to it or in its setting. If
this check fails there will be an error indication (see 7.1.6).
(i.e. it is an error to clear an L in state (ii) or (iii) see
7.1.2.2.1) The freed L’s are then in state (i).

7.1.4.2.21 Monitor directive

[monitor directive]=MON[l*?]VS[element]VS[element]%

e.g. MON *SIG 2

The first [element] specifies an event and the second [element] a
style (see 5.2). These monitoring conditions are set just before
the program is entered (see 7.1.4.2.12)

7.1.4.2

 Page 11

 1.2.65

7.1.4.2.22 Signal directive

[signal directive]=SIG[l*?]VS[quantity]%

e.g. SIG 30

The quantity specifies a drum address. The sign bit of the word
in this drum register will be made 0.

7.1.4.2.23 Unsignal directive

[unsignal directive]=UNS[l*?]VS[quantity]%

e.g. UNS 123

The quantity specifies a drum address. The sign bit of the word
in the drum register will be made 1.

7.1.4.2.24 Scratch directive

[scratch directive]=SCR[l*?](VS[n]?)VS[asterisk]MT[n]VS
 (((P?)[n].[n].[n].(P?)(L?)VS[doc name]),0)%

 e.g. SCR *MT1 F12.2.65 X/Y/2/*/**

This directive differs from the NEW directive (see 7.1.4.2.4) only
in that Basic Input Routine writes the new Block 0 information
with a 150/44 instruction.

7.1.4.3

 Page 1

1.2.65

7.1.4.3 SEQUENCES

These are terminated by the NORMAL directive (see 7.1.4.2.1)

7.1.4.3.2 Nest sequence

[nest sequence]=NES[l*?](EL L[element]VS L[element]*?)%

e.g. NEST
L3.0 L20
L99 L2.1
L860 L1
NORMAL

This causes the current status of all the L’s to be remembered
(nested) and these L’s to be freed forming the new set, and are
regarded as being in state (i) (see 7.1.2.2.1).

Equivalences between identifiers of the 2 sets may be specified;
the first L specified is one of the current set and the second L
specified is one of the new set.

The nested set is remembered until a PULLUP directive (see
7.1.4.2.9) is read.

7.1.4.3.3 Call sequence

[call sequence]=CAL[l*?]VS[doc request name]
 (VS+[quantity]VS[quantity]?)(EL L[element]VS L[element]*?)%

e.g. CALL A/DOCU/- +900 A64
L800 L0.1
L801 L0.62
NORMAL

Call sequences are remembered until PROCESS directive (see
7.1.4.2.1) is read.

[doc request name] specifies the “called” document which Basic is
to find and read (a document on a composite magnetic tape document
will be found).

With the CALL sequence, it is possible to specify the transfer
addresses (+[quantity] specifies V1 and [quantity] specifies V2)
to be used when reading this “called” document.

Succeeding lines specify pairs of L’s which are to be equivalenced
as in the manner of a NEST sequence (see 7.1.4.3.2) while the
document is being read.

When the CALL sequence is implemented (i.e. PROCESS has been
read.) Basic finds the document. If transfer addresses have been
specified with the CALL sequence, Basic Stores the current (old)
values of the transfer addresses, it then uses the specified
transfer addresses for reading this document, and when it finishes
reading this document (i.e. on reading END) it then restores the
values of the transfer addresses to their former (old) values.

7.14.3

 Page 2

 1.2.65

Basic having found the document, nests the L identifiers (i.e. the
current status of all L’s are remembered and then freed). L
identifiers of the two sets may be identified; the first L being
one of the current set and the second L being one of the new set.
When the document has been read (i.e. on reading END) the nested
set of L identifiers are restored.

7.1.4.4

 Page 1

 1.6.65

7.1.4.4 Labels, equations

7.1.4.4.1 Core label

[core label] = (G,L,V)[element][right parenthesis]%

e.g. L1.2)
V4)
G1)

This causes the specified identifier to be set; its value equal to
the core transfer address (V2). If G is written, the
corresponding L is specified but the label is taken as an optional
setting (see 7.1.4.4.5)

7.1.4.4.2 Drum label

[drum label]=[core label][right parenthesis]%

e.g. L3))

This causes the specified identifier to be set, its value equal to
the drum transfer address (V1). If G is written the corresponding
L is specified but the label is taken as an optional setting.

7.1.4.4.3 Equations

[setting] = L[element](VS?)[equals sign](VS?)[+?][field],
V[element](VS?)[equals sign](VS?)[±?](quantity]%

e.g. L26=35612+L1.3-V1
L2.3=A100
V7=V7+2

Each equation causes the identifier specified on the left-hand
side to be set, its value equal to the quantity or field specified
on the right-hand side.

If an L is specified, forward references in its setting are
allowed. If the L specified is already set, a new setting will be
treated as an error.

If a V is specified then this setting is its new value. No
forward references are allowed in its setting.

7.1.4.4.4 Maximum facility

[max setting] = K[element](VS?)[equals sign](VS?)[±?][field],
 W[element](VS?)[equals sign](VS?)[±?][quantity]%

e.g. K27=98+V7+V8
W6=V6+V7+1024

For K, an L is specified by the element. For W, a V is specified
by the element. The equation sets the specified identifier equal
to the largest element in the field or quantity specified or to
zero if this is negative. In the above example L27 is set to have
the value of the largest of 98, V7 or V8. V6 is set to have the
value of the largest of V6, V7 or 1024.

7.1.4.4

 Page 2

 1.2.65

7.1.4.4.5 Optional equation

[optional equation]=G[element](VS?)[equals sign](VS?)[±?][field]%

e.g. G99=255107-L22

If the L specified by the element (L99 in the example) is already
set then this optional equation is ignored. If the L is not
already set then this equation is taken as an ordinary setting of
the L.

7.1.4.5 Composition of a Basic Input Program

7.1.4.5.1 Unit of Basic Input

[unit of basic input]=([any character except left parenthesis and EL] [any
character except EL]*?)EL,[left parenthesis]EL[unit of basic
input*?][right parenthesis]EL%

The check directives (see 7.1.4.2.11), and q-directive (see
7.1.4.2.19) if the check is satisfied skip one line unless that
line is a left parenthesis in which case they skip further lines
until a matching right parenthesis is found.

e.g. X L4 1
ABOLISH

e.g. X V10 0
(
 RES *LP2 A/DOC
 V3=20
)

7.1.4.5.2 Item of Basic Input Language

[item]=(VS?)[label?][item],[storable word?][comment],
([sequence][comment]*?),[directive or setting or equation]
[comment],[parenthesis][comment]%.

where

[comment]=(VS?)(|[any character except EL*?]?)EL%

e.g. RES *DRUM 2000
150 L0 L1 50
00S L3 L2 0
V2=A100

L0)L3)) 14 L1.0 20 | set counter
75 L1.1 0 | jump
+800
+10,10,10,10,10,10,10,10

L1.1) 00XY A100 L2.0 A3

L10)L6=V2-L0
ENTER 0

Basic Input reads items until ENTER, J, B,
ABOLISH or END (at highest level) is read.

7.1.5

 Page 1

 1.8.65

7.1.5 The Basic Input Program

This program consists of several chapters all of which read Basic
Input Language formats.

When JOB directive (see 5.7.2) is read by OMP, OMP loads a chapter
of Basic Input into the job’s reserved core-store and enters this
chapter which continues by reading from the same source (on which
JOB was read.). This chapter tries to get 128 more words of core
if 1008 have been allocated, and then loads Chapter 1 to continue
reading.

RERUN directive calls in Chapter 1.

Chapters of Basic Input are called in by obeying 150/51 with Y=A0
instruction (see 5.3.51). X=2n causes a chapter to be loaded
whereas X=2n-1 causes the same chapter to be loaded and entered.
X=0 is not allowed.

7.1.5.1 Chapter 1 (i.e. X=1 or 2 in 150/51)

When this chapter is called in

A64 contains an integer (zero or positive) which indicates the
type of print barrel (see section 14 and 7.1.4.2.12) that this
installation has.

A65 contains the datum point of the job.

A66 is used by Basic Input to store constants for use by
autocodes. These constants are explained as follows.

Call [A66]u PROGLIM. Then PROGLIM is the address of the core-
store register in Basic’s core working space whose contents
represent as an integer the amount of drum reserved for the
program being stored. This is the address of the drum register of
the start of Basic’s drum working space. This number is initially
taken from A55 and A55 cleared.

Call [A66]m BINDEX. Then BINDEX is the address of a core store
register. This register is the start of Basic’s index to its core
working space. Each word of the index represents a buffer of 64
words of core-store; each buffer containing some words from
Basic’s drum working space. The format of the index words is

OOS drum address core address 0

where the drum addresses are relative to [PROGLIM]. TY=1 means
that the block is to be written to the drum (it has been changed).
RX=1 means that the block is “locked down” (it must not be written
to the drum).

If [A64]<0 then Basic does not give up its working space and does
not clear the core-store A66 onwards.

The entry-point to Chapter l is A67.

This chapter sets V1=0 and V2=A64.

7.1.5

 Page 2

 1.2.65

Chapter 1 then

 (i) assumes that the input source is in A62 (if the sign bit is 1,
then the modifier half is taken as the drum address from which to
read.)

 (ii) assumes that the number of words of core available for Basic’s use
is in A56 (it must be at least 1008 otherwise reservation
violation action will occur.)

(iii) uses the contents of A55 to get an initial setting of [PROGLIM]
(i.e. to find where Basic’s own drum working space begins - it
will be at a multiple of 64). Drum is reserved in units of 512
words if possible, otherwise in units of 64. If Basic asks for
more drum and none is available then the job is halted NO DRUM.
(If the request is for more than would be available if there were
no other programs in the machine then Basic abolishes 10.)

Unless “asked to” do so, Basic does not alter the contents of
core-store registers, A3 to A12, A56, A62 and AV56 upwards nor of
the drum registers D0 to D([PROGLIM]-1)

All other registers may be altered by Basic Input during input.

Chapter 1 sets monitoring on *PFN (Style 7) and *SIG (Style 0)

7.1.5.2 Interludes

An interlude is brought down from the drum and entered by a J
directive (see 7.1.4.2,13).

An interlude is given one minute. There is no check that all L’s
so far referred to have been set. If any RESERVE or NEW or
SCRATCH directives for reserving peripherals have been written the
interlude must be preceded by a PROCESS directive (see 7.1.4.2.10)
to implement these requests. Monitoring on *PFN (Style 7) and
*SIG (Style 0) will be set; other monitoring styles are default.
Restarts are set for the current input source (see 7.1.7)

When an interlude is finished it is usual to “return to” a chapter
of Basic Input which then continues reading in more program in
Basic Input Language (i.e. the last instruction obeyed in the
interlude will probably be a 150/51 instruction with Y=A0).

What an interlude must preserve and what information will be lost
depends upon which chapter of Basic Input is “returned to”.

7.1.5
Page 3
1.2.65

7.1.5.2.1 Return to Chapter 1

i.e. 150 1 A0 51

This instruction causes chapter 1 of Basic Input to be loaded and
entered. (see 7.1.5.l)

The interlude must preserve (i.e. leave in)
A56 — the amount of core store available for Basic Input’s use.
A62 - the current input source.
A55 must be reset to contain the amount of drum required by the
program.

Lost will be

 (i) settings of all L’s and the V’s except V3 to V12.

 (ii) all memory of forward references not filled in.

(iii) contents of the input buffer or buffers.

On 7-track this consists of the line following the J directive.
On 5-track this consists of up to 16 characters after the CR LF
terminating the J directive.

On cards this consists of the contents of the card following the
card containing the J directive.

On magnetic tape this consists of the rest of the block containing
the J-directive.

On drum this consists of the rest of the word containing the NL
terminating the J directive.

 (iv) The report level unless 0.

As this chapter switches on monitoring on *PFN (style 7) and *SIG
(style 0) the interlude may switch these off if required.

7.1.5.2.3 Return to Chapter 3

i.e. 150 3 A0 51

This instruction causes Chapter 3 of Basic Input to be loaded and
entered.

The interlude must preserve in the core
A44 to A65 and A500 to AV56 (except A62 - see below)

The interlude must preserve on the drum D [PROGLIM] upwards. (i.e.
Basic’s drum working space).

Lost will be the contents of the input buffer or buffers as for
Chapter 1

A change of input source (i.e. in A62) will be noted and Basic
Input will continue reading from the new source.

As this chapter switches on monitoring on *PFN (style 7) and *SIG
(style 0) the interlude nay switch these off, if required.

7.1.5

Page 4

 1.2.65

7.1.5.2.19 Return to Chapter 19

i.e. 150 19 A0 51

This instruction causes chapter 19 of Basic Input to be loaded and
entered.

The interlude must preserve in the core .A44 to A250 and A500 up
to AV56.

The interlude must preserve on the drum D[PROGLIM] upwards.

The contents of the input buffer or buffers will not be lost.

This chapter does not switch on monitoring on *PFN (style 7) and
*SIG (style 0) and so the interlude must not switch these off.

7.1.5

 Page 5

1.8.65

7.1.5.3 The GNC System (Chapter 17)

The get-next-character (GNC) routines of Basic Input provide a usable self-
contained system for input from 7- or 5- track paper tape, cards, drum or
magnetic tape.

The instruction

150 17 A0 51

causes Chapter 17 of Basic Input to be loaded into the core and entered to
set up the GNC. Before this instruction is obeyed the name of the input
source must be put into A62 and the link address into A17. The 150/51 when
obeyed causes a GNC routine appropriate to that type of device to be set up
and then return to the link address.

The registers used by the GNC’s are A13 for checksum and
A14 to A17, A44, A48, A51 to A53, A62, A66 to A250.

All of these (except A14 to A17) must be preserved between entries to the
GNC.

To set up, for example, a GNC for a 7-track reader (*SR1 say)
the sequence of instructions might be

14 A62 *SR1 | name of Input source
14 A17 L0 | set link
150 17 A0 51 | set up GNC
L0) an instruction | return here

To use the GNC, the instruction

86 (A53) A17

is obeyed. This enters the GNC which produces the next correct character
from that source at the l.s. end of A44 in standard internal code (see
5.6.1) and returns to the instruction following the 86 instruction which
caused entry.

Comments (vertical bar character and those following until NL) and ER
characters are ignored within the GNC. Only one SP character will be
produced for a string SP characters (i.e. VS). Spaces at the beginning and
end of the line will not be produced. After the entry to chapter 17 one or
two NL characters may be produced which have no counterpart on the input
medium.

7-track conventions

The code accepted is the Flexowriter code (see 4.3.3). Lower and upper
case letters are regarded as equivalent. Redundant shift characters are
ignored, (as are the control characters, PN, PF, PT, ST.) TB is a VS
character (tab positions are 16 SP characters apart). Characters are
converted into the standard internal code (see 5.6.1). Unassigned
characters are ignored.

A line is considered to have a limit of 118 printing positions.

Overprinting (e.g. use of BS character) at a printing position is
interpreted thus:-

7.1.5

 Page 6

 1.8.65

a line with crossed parentheses ╫ is completely ignored.

C (a character) BS ER is equivalent to ER

ER BS C is equivalent to ER

SP BS C is equivalent to C

C BS SP is equivalent to C

C BS C (the same character) is equivalent to C

C1 BS C2(different characters) gives error character (character-value 14)
except ╫ (see above).

When the 118th position is reached, then further characters are treated as
overprinting in this position.

BS character at the beginning of the line “leaves you” at the beginning of
the line.

5-track conventions

The code accepted is given in 4.3.3. Characters are converted into the
internal code (see 5.6.4). Redundant shift characters on a line of
information (i.e. with other printing characters, SP is a printing
character, ER is not) “don’t get through”, but if the job has a monitoring
peripheral, then a message is printed giving error 26 and the line number,
but this is not treated as an error.

≥ gives error character (character-value 14)

→ is treated as vertical bar.

CR not followed by LF gives error character. ER is not allowed between CR
and LF. If since the last LF only non-printing characters are present then
LF is allowed.

Card conventions

The code accepted is given in 5.6.2. One card is one line.

Magnetic Tape and Drum

The code accepted is given in 5.6.1. For magnetic tape conventions also
see 6.1. The magnetic tape GNC ignores blocks written by :DUMP/ (i.e.
blocks whose word 0 contains 58 in Z-address field).

7.1.5

Page 7

 1.2.65

7.1.5.4 Directives Losing Input Buffers

After the following directives have been processed the rest of the
input buffers is lost (c.f. 7.1.5.2.1) and a line containing these
directives should be followed by a separator see 7.1.5.5

(a) J (except if return is to Chapter 19)

(b) USE (or COMPILER)

(c) PROCESS

(d) RES *CORE (if reservations are increased)

(e) READ

(f) ENTER

(g) END

7.1.5.5 Separator

7-track paper tape - Leave 1 blank line

5-track paper tape - At least 13 FS followed by CR LF

Cards - 1 Blank card

Magnetic Tape - Start a new block

Drum - Start a new word

7.1.5.6

7.1.5.6.1 Before reading each line of input Basic asks for 1 minute.

7.1.6

 Page 1

 1.8.65

7.1.6 Errors

7.1.6.1 If an error is encountered e.g. an impermissible combination of
characters, then Basic outputs an error report (see 7.1.6.3) on the job’s
monitoring peripheral (normally this will have been specified with the
REPORT directive (see 7.1.4.2.6)), or on the Flexowriter if the job has no
monitoring peripheral.

7.1.6.2 If an error has been encountered and the job has no monitoring
peripheral, then the job is abolished 1. If the job has a monitoring
peripheral, then the job is not abolished but Basic continues reading the
program keeping a count of errors encountered. If 15 of these errors are
obtained then the job is abolished.

Note that if a serious error (see 7.1.6.4) is encountered the job will be
abolished before this count is 15.

7.1.6.3 The error report may consist of two lines

The first line is

ERROR n1 ON g V1 n2 V2 n3

Where n1 is the error number (see 7.1.6.3)
n2 is the current drum transfer address
n3 is the current core transfer address
g is the geographical name of the current input device;

if the current source is the drum then the drum source address
is given.

The second line contains characters of the line containing the error; the
first character on this second line is the incorrect character and then
follows the rest of the line. Not all error numbers cause printing of a
second line e.g. Error 26, and in the case of Error 16, the second line is
the reset L.

7.1.6.4 When Error 1, 24, 25, 27, 30 or 32 occurs the program is abolished
2

If a RES *DRUM directive or extra drum needed for working space asks for
more drum than would be available if there were no other programs in the
machine, Basic abolishes 10.

7.1.6

 Page 2

 1.8.65

7.1.6.5 Error Numbers

 1. Error in a J-directive

 2. Wrong character at beginning or end of line

 3. Error in X or Y directive

 4. Error in F-directive

 5. Error in an S or C directive

 6. Error in right-hand side of a setting

 7. Too many datum points in a field

 8. Error in left-hand side of a setting

 9. Forward reference in right-hand of V setting

10. Forward reference in quantity

12. Comma after a forward reference

13. Z replaced

14. Wrong character in function part, or wrong character before
an address-field (e.g. no space character between fields)

15. Last digit of function 8 or 9

16. Reset label, the second line is the reset label. This error
does not count as one towards the 15. Unset label is not an
error.

17. Error in Q-directive

18. Overflow in some fields

19. Error in monitor directive

20. Error in document name

21. Error in TIME directive

22. Error in REPORT directive

23. Error in RES NEW or SCR directives

24. Error in READ or USE directives

25. Error in ENTER directive

26. Error in conventions of input medium (e.g. CR not followed
by LF 5-track, or reading from drum outside reservations)

7.1.6

Page 3

 1.6.65

27. Error in B-directive

28. V1 not sensible

29. Error in element

30. Because of errors found, program cannot be entered.

31. Clearing unset label, Label is cleared - this error does not
count as one towards the 15.

32. Error in GNC, e.g. asking Basic to read from device of
incorrect type.

33. Error in CALL or NEST sequences, e.g. duplicated right-hand
side equivalences

34. Error in SIG or UNS directives

35. Too many blocks of L’s and forward references
(limit is 32767)

36. Impossible document name

37. Too little core store for L’s index, give Basic more core

38. Too many forward references in right-hand side of L setting.
(Limit is 31)

7.1.7

Page 1

 1.3.66

7.1.7 Restarts

7.1.7.1 7-track Paper Tape

 When a parity failure occurs on the 7 track reader from which
Basic Input Routine is reading then one of the following occur.

7.1.7.1.1 If Basic is reading anything other than binary and map format
or a semi-built-in program then a message on the Flexowriter
requests the operator to carry out a specified restart
procedure (See 6.4.1).

7.1.7.1.2 If Basic is reading binary and map format following a B
Directive (see 7.1.4.2.16) then the action is to abolish the
job.

7.1.7.1.3 If Basic is reading a semi-built-in program and storing it on
the drum, then the action is to ask the operator to re-load
the semi-built-in program. The message CHECKSUM FAIL in case
of 7-track or NONSTAD TAPE in case of magnetic tape may be
output.

7.1.7.2 Cards (80 or 65 column)

 When a failure in reading a card occurs then one of the
following occur.

7.1.7.2.1 Illegal Punching

 Illegal character is given character-value 14, (see 5.6.1)
which will produce an error (see 7.1.6) when the line is
processed, though if to the right of vertical bar character,
the error character is ignored and so illegal punching in
comments is permitted.

7.1.7.2.2 Other Events

 The action is to print the failure message and the standard
restart message (see 6.4.2).

7.1.7.3 Magnetic Tape

If a reading failure occurs on a composite document then the
message NON-STANDARD COMP.TAPE is output.

7.2

Page 1

1.7.65

7.2 SYMBOLIC INPUT

INDEX

 7.2.A Introduction

.1 Symbolic Input program.

.2 Stages in a Symbolic Input compiling run.

 7.2.B Notation and Character Equivalences

.1 Mark 2 - ** notation

.2 Character Equivalences.

 7.2.C Job Tape Layout, Peripheral and Document Names

.1 Document and Document Request Names.

 .1 Document names
 .2 Document request names.

.2 Job Tape Layout

 .1 BASIC directive. Implemented.
 .2 CORRECT, WITH and GIVING directives. Implemented.
 .3 RESERVE directive. Compiled.
 .4 NEW and SCRATCH directive* Compiled.
 .5 TIME directive. Compiled.
 .6 REPORT directive. Implemented and compiled
 (except see 7.2.C.26)
 .7 READ directive. Implemented.
 .8 Other Job Tape directives.
 .9 END directives description.

.3 Peripheral Names.

 7.2.D Corrections

.1 ALTER directive. Implemented.

.2 Identification of 1st line to be corrected.

.3 Example of a Correction Tape.

 7.2.E Punching Conventions

.1 7-track Orion Flexowriter Code.

.2 5-track Pegasus/Mercury/Sirius Teleprinter Code.

.3 Punched Cards.

 7.2.F Addresses and Instructions

.1 Layout of primitive instructions.

.2 Addresses.

.3 140- and 141- instructions.

7.2

 Page 2

 1.7.65.

 7.2.G Symbolic Identifiers, Labels. Drum Labels and Equations

.1 Symbolic Identifiers.

.2 Labels and Drum Labels.

.3 Equations.

 7.2.H Directives

.1 List of Available Directives.

.2 START and ENTER directives. Compiled.

.3 NOSIGNAL directive. Compiled.

.4 NAME

 7.2.J Numbers - Special Formats

.1 Numbers.

 .1 Fractions.
 .2 Integers
 .3 Standard Packed Numbers.
 .4 Layout and Range of Standard Packed Numbers.

.2 Directives for Special Formats, NORMAL directive.

.1 DOUBLELENGTH directive.)

.2 FLOATINGPOINT directive.)

.3 MASK directive.)

.4 MIDPOINT directive.) All implemented

.5 MIXEDNUMBERS directive.)

.6 OCTAL directive.)

.7 PACKEDNUMBERS directive.)

.8 STERLING directive.)

.9 TEXT directive.)

 7.2.L Routines - Program Organisation

.1 ROUTINE and END directives. Implemented.

.2 Notation for routines.

.3 References, the identifier and prefix system.

 .1 Prefixes, local and global references,
 references to a word in another routines.

 7.2.M Library Subroutines and Assembly

.1 Library subroutines.

.2 Assembly - LIBRARY directive and 1086 macro. Implemented.

 7.2.N Macro - Instructions and the + and > notations

.1 Standard Macros.

.2 Private Macros.

.3 + and > notations.

7.2

Page 3

1.7.65

 7.2.P Chapters and Chapter Changing

.1 CHAPTER directive. Implemented.

.2 TRANSFER directive. Compiled.

.3 Layout of a chapter.

.4 The & notation.

.5 Chapter - changing macros. Compiled.

 7.2.Q Monitoring

MONITOR directive. Compiled.

 7.2.R Messages including Error Numbers

 7.2.S Dumping Facility.

7.2.A

Page 1

1.11.1962

7.2.A INTRODUCTION

7.2.A.1 Symbolic Input is name of the standard language for writing
programs in Orion machine code. A program written in this language is
called a Symbolic Program.

Symbolic programs are punched in a natural way; on 7- or 5-
track paper tape or cards and are then read by a semi-built-in program
called the Symbolic Compiler which translates the Symbolic program into
Basic language. The resulting program may then be run as part of the same
job, or the Basic version may be output on punched paper tape, cards or
magnetic tape to be run as a separate job.

7.2.A.2 A run involving the symbolic compiler divides into four
distinct stages. We will consider using paper—tape but the following
details apply equally to cards or magnetic tape.

The stages are

 (i) Reading the job-tape.

 (ii) (Possibly) reading in the corrections tape,

(iii) Reading in the program tape.

 (iv) Either running the program or outputting the Basic
version of the program or outputting the corrected
Symbolic version of the program.

The various courses of action to be followed are specified by
directives on the job-tape. Section 7.2.C describes the permissible
contents of the job-tape. The corrections tape is fully specified in
section 7.2.D and the remainder of section 7.2. describes the facilities
available to a Symbolic program.

7.2.B

 Page 1

 1.7.65

7.2.B NOTATION AND CHARACTER EQUIVALENCES

7.2.B.1 Mark 2 - **

In this section 7.2 the symbol ** denotes Mark 2 facilities,
all of which are available.

7.2.B.2 Character Equivalences

The standard Orion codes for 5-track and 7-track punched paper
tape and cards are used. The following sections are written in terms of 7-
track paper tape characters. Some of these are not available in the 5-
track code and the following equivalences apply throughout.

7-track character 5-track character

: ≠

& £

| →

7.2.C

Page 1

 1.7.65

7.2.C. JOB TAPE LAYOUT, PERIPHERAL AND DOCUMENT NAMES

7.2.C.1. Document and Document Request Names

7.2.C.1.1 Document names must adhere to the conventions (see 6.1). A
name consists of 8 components separated by solidus, though non-significant
null components and corresponding solidi need not be specified. Each
component is up to 8 characters; letters, digits and point are allowed.
Where in a directive a document name is specified, Symbolic Input allows *
to be written instead of a component and for this component it stores
today's date. ** means store the time as this component. + (plus) as a
component means the document is composite (magnetic tape only).

7.2.C.1.2 Document request names. When requesting a document (e.g.
following a CORRECT directive) the programmer may or may not specify the
complete document name - the facility of using - (minus) instead of a
component to mean "don't care what this component is" is allowed. The
first two components must be specified however. For example

ORION/ONE/-/TWO

is used to request any document with name ORION/ONE/any component/TWO with
the last 4 components being null.

ORION/ONE/TWO-

is a request for a document whose first three components are ORION/ONE/TWO
and any 5 components.

The document to be found may be on a composite magnetic tape. If Symbolic
is reading from a composite tape then on finishing with the tape it
relinquishes and selects.

If the required document follows on the same tape as the request name, then
the word THIS may be used to specify it. THIS is allowed only on the job
tape.

7.2.C.2 Layout

The job tape for a compiling run starts with JOB directive (see 5.7.2.1)
followed by 2 lines

COMPILER (or USE) SYMBOLIC

and a blank line.

Symbolic needs at least 2544 words of core. If there is no request for
core with JOB directive then the compiler firstly request 3056 words, but
if this is not available then it reduces the request by 64 words until the
request is granted unless 2480 has been reached in which case the job is
halted NO CORE. If there is a request for core with JOB directive which is
2544 or more then Symbolic uses this core given to it; if the request is
for less core then the action is as for no request.

The rest of this job is read by the Symbolic Compiler and may contain some
or all of the following directives, each of which requires a new line.

Note that section 7.2.C.3 gives a description of peripheral names.

7.2.C

Page 2

1.7.65

7.2.C.2.1 BASIC VS Peripheral Name VS Date (for magnetic tape only) VS
Document Name.

e.g. BASIC *SP1 MY/BASIC/VERSION/OF/SYM/*/**

This directive causes a Basic version of the symbolic program to be given
on the specified peripheral device. Several BASIC directives may be given
so that several copies are obtained.

7.2.C.2.2 CORRECT VS Document Request Name

WITH VS Document Request Name

GIVING VS Peripheral Name VS Date (for magnetic only) VS document name.

These directives are only used if it is desired to modify the program.

The document names are respectively (i) the document to be corrected, (ii)
the document contain the corrections, and (iii) heading of the output
document, the form of which is specified by the peripheral name. The Date
is only included if the specified peripheral is a magnetic tape, it is
written as described in section 7.2.C.2.4.

If the directive BASIC is used then the directive GIVING is omitted. In
this case the output will be the corrected program in Basic Input Language.

If the directive BASIC is omitted the output is the corrected symbolic
program, and if both BASIC and GIVING are omitted the corrected program is
run.

Several GIVING directive may be given, so that several copies are obtained.

7.2.C.2.3 RESERVE VS Peripheral Name VS Document Request Name

(a) Peripheral devices are reserved for the job by this directive. Each
device requires a RESERVE directive on a new line. The document name
specifies the name of the document that is to be input or output.
For magnetic tape documents symbolic will find one on a composite
tape.

To write on to magnetic tape the NEW or SCRATCH directives may be used,
this is described in the following section.

(b) Reservations may be made for space in the drum store and core store
as follows:

RESERVE VS * DRUM VS No. of words in drum store required. Compiled.

RESERVE VS * CORE VS No. of words in core store required. This
directive is compiled only. It is advisable to have only one request
for core.

In both cases a symbolic identifier may be used instead of the number,
which would then be specified in the program against this identifier.

Note that on a drum load and go any RES DRUM directives are ignored. If on
a load and go run no RES DRUM or CORE directives are read then the program
is entered with the amount used by the Compiler.

The RESERVE directive may appear anywhere on the job tape or program tape.

7.2.C

Page 3

 1.7.65

7.2.C.2.4 NEW and SCRATCH directives

NEW or SCR VS Peripheral Name (magnetic tape) VS Date VS Document Name.

e.g. NEW *MT2 P1.6.66 MY/DOCUMENT/*

These directives ask for a new Block 0 to be written onto the tape. (If
the peripheral has not already been reserved then a scratch tape is re-
quested). NEW will use 150/41 instruction (see 5.3.41) so that the Block 0
is written straight away whereas SCR uses 150/44 and Block 0 is written
only if, for example, the run is successful.

The above example ensures that the tape on the deck known to the program as
*MT2 will have the new Block 0 information, i.e. Date meaning 1st June 1966
with write permit bit (D0) set because P before is present and with date
control bit (D24) not set because P after the date is not present. The
document name will have first 2 components as specified, the third as
today's date and the last 5 null.

These directives may appear anywhere on the job or program tape.

7.2.C.2.5 TIME VS No. of minutes

This optional directive specifies that when the program is actually
entered, the timer is to be set to the number of minutes specified and if
the program uses more than this amount of mill time it has run far too long
a time (perhaps having got into a loop) and the default action is to halt
the program. If no time directive is given, the timer is set to 1 minute.

7.2.C.2.6 Report Directive

REPORT VS Level VS Peripheral Name or number VS Document Name

REP 2 *SP1 MY/REPORTS/*

This directive causes printing on the specified peripheral during input and
reserves the peripheral if not already reserved and sets it as the job's
monitoring peripheral. This directive is implemented so that reports about
the Symbolic program are given while Symbolic compiler is reading it in,
and it is also compiled so that reports about the Basic version are given
while Basic Input is reading. Note that if the Report directive is given
after a BASIC directive then the REPORT directive is implemented but not
compiled.

7.2.C
Page 4
1.7.65

An integer may be specified instead of peripheral name which means that a
slow output device is required and that its programmer's peripheral name is
to have the number given. If a slow output device has already been
reserved with this number then it is used, otherwise the first available
slow output device is reserved with the programmers peripheral name having
this number.

REP 2 5 MY/REPORTS/*

would (if no output peripheral numbered 5 has been reserved) reserve the
first available one, say a line printer as *LP5 and use it and set it as
monitoring peripheral.

The levels of printing are

0 Error reports (see 7.2.R.) only.
1 All directives encountered in addition to error reports.
2 The values of all identifiers which are set or referred to and Level 1

printing with the addition of the Basic Input interpretation of the
directives.

For levels 1 and 2 a peripheral must be specified and for level 0 if no
peripheral is specified, the Flexowriter is used. Level 0 is assumed
unless another level is specified.

7.2.C.2.7 READ VS Document Request Name

The READ directive can occur at any time; it causes the Symbolic Compiler
to continue reading from the specified document. At this point usually the
program will be read in. This directive needs a separator (see 7.1.5.5)

7.2.C.2.8 The directive MONITOR (section 7.2.Q) and NOSIGNAL (section
7.2.H.3) may also appear before the CORRECT directive if required.

7.2.C.2.9 End directive

This has several meanings which are:-

 (i) END used to terminate the job tape. In this case it appears before
any storable words and is implemented - END telling Symbolic that the
job tape has been read and to continue. For example it is used on a
corrections run.

JOB CORRECT
USE SYMBOLIC
1 Blank line
CORRECT MY/SYM/PROG/-
WITH MY/CORS/-
END

Note that the following is allowed, for example

JOB CORA
USE SYMBOLIC
1 Blank line
CORRECT MY/SYMBOLIC/PROG/-
WITH THIS
END |/Terminating job tape effect
1 Blank line
ALTER 3 AFTER FRED 1
60 JOE A1
END |/ this terminates the corrections tape.

 (ii) END used to terminate the corrections tape(see 7.2.D.1.) i.e.
terminating ALTER sequence as in the last END in the above example.
In this case END is implemented and Symbolic continues.

(iii) END used with ROUTINE directive (see 7.2.L.1) eg. END SORT/

7.2.C

 Page 5

 1.7.65

In this case END is implemented and Symbolic continues.

 (iv) If an END directive appears after any storable words on the program
part and it is not either case (ii) or (iii), then Symbolic will
compile this directive and will terminate compilation. If a basic
version of the Symbolic program has been produced then this basic
version may be run in the following way, for example.

JOB RUN
USE MY/BASIC/VERSION/OF/SYM/PROG/-
| Blank line
V1 = 593
60 A103 A5
ENTER 4

Where the document MY/BASIC/VERSION/OF/SYM/PROG does not have an
ENTER directive and is terminated by END.

7.2.C.3 Peripheral Names

Peripherals are classified so that if a particular peripheral is not
available another in the same group can be used without changes in the
program.

The groups are each specified by an asterisk and two letters as follows:

*SR seven-track tape reader.
*FR five-track tape reader.
*CR card reader (80 columns)
*MT magnetic tape
*SP seven-track tape punch
*FP five-track tape punch
*CP card punch
*LP Line printer.
*VR Card reader (65 columns)

If the program uses three magnetic tape decks, say, they may be referred to
as *MT2, *MT3. The number following the letters must be less than 32.
Note that the numbering need not be dense and the omission of a number
implies zero i.e. *TR implies *TR0.

The two letters are stored in 5 bits each (from A=1 and B=2 to Z=26)
followed by the 5 bits of the integer to give a 15 bit "number".

e.g. *SP17 is compiled by input as

19 x 210 + 16 x 25 + 17 = 19985

This number may be inserted on the job tape in place of the code specified
above if desired.

Peripheral names are not ordinary identifiers. They can be used whenever
an identifier can be used but they cannot be set by the user, i.e. they
cannot be used as labels or appear on the left hand side of an equation.
Note that MT3 is an ordinary identifier, distinct from *MT3.

During compilation Symbolic may use peripheral devices for its own purposes
in which case the number of the name for this device will be 31, 30 etc.
The first device being 31, the second 30 and so on. For example the tape
used for storing "on TAPE" is usually *MT31. When Symbolic has finished
with a device it relinquish it; if the document is on a composite magnetic
tape then on finishing with it, Symbolic relinquishes and selects.

7.2.D

 Page 1

 1.11.1962

7.2.D CORRECTIONS

Corrections to a symbolic program are in the form of a text
editing process e.g. "Alter the third line after the line labelled BUZZ".

A "line" is any line on the printout of the program which
contains any visible printing, except that ER and any including the
composite character ╫ are deemed to be invisible.

7.2.D.1 The Correction Directive ALTER.

The single correction directive "ALTER" permits the insertion,
deletion and alteration of lines of the original symbolic program.

The layout is as follows:

ALTER VS Line (see 7.2.D.2) VS Number NL
Instructions etc. if any NL
Terminating directive.

'Number' gives the number of lines of the original program
which are to be deleted. If it is zero, the new lines following the ALTER
directive are inserted into the program immediately after the line named.
For example, if the number is 5, five lines beginning with the line named
are deleted from the original program before the new lines (if any) are
inserted. It is permissible for an ALTER directive with a non-zero number
to be followed immediately by the terminating directive (see next
paragraph), thus making deletion without insertion possible.

The "terminating directive" will either be the next ALTER
directive or the END directive which signifies the end of the corrections
tape.

The corrections may appear in any order on the corrections
tape. If two corrections attempt to alter the same line, an error is
reported.

7.2.D.2 Identification of the first line to be corrected

The first line to be deleted (or the line preceding insertions)
is written in the ALTER directive in the following notation.

A line on the printout is referred to as a line with a label,
if it possesses one, otherwise as the line so many after a line which is
labelled. Thus a line labelled BUZZ is identified as BUZZ, and the third
line after BUZZ is identified as 3AFTER VS BUZZ where there may be a VS
between 3 and AFTER. AFTER may be abbreviated to AFT or just A if desired.
The expression 0AFTER VS BUZZ is not allowed.

7.2.D

 Page 2

 1.11.1962

Note that a line may be specified by any preceding label but
not by a following one,

e.g. in the sequence of instructions

FRED) 14 DATA NUM
 JOE) 14 MOD 0
 14 (ADDR) 0
 JIM) 00Y (ADDR) (DATA) MOD

* 81 JIM (CT) MOD

JOHN) 00 DATA CT

the line * may be identified as

 4AFTER FRED
or 3AFTER JOE
or 1AFTER JIM

but not as being the line before JOHN.

It may be necessary to refer to line BUZZ of routine SORT/ as
the line labelled SORT/BUZZ to distinguish it from a line labelled BUZZ in
another routine. If such a line is referred to simply by the label 'BUZZ'
the first line with its last component being 'BUZZ' will be corrected.

It is permissible to refer to a line not in the routine SORT/
as 10AFTER VS SORT/BUZZ if necessary. Directives of the form ROUTINE SORT/
and END SORT/ may be corrected; however, all references on the corrections
tape to routine names and instructions refer to the original symbolic
program. For example, if the directive ROUTINE SORT/ is corrected to
ROUTINE TYPE/ any correction to the line labelled BUZZ in this routine
should still refer to it as SORT/BUZZ.

7.2.D.3 Example of a Corrections Tape

It is desired to correct part of the following program:

ROUTINE SORT/
BUZZ) 00 A1 A2
 04 A3 A5
 14 A6 100
 75 JOE 0

to give a new version

ROUTINE SORT/
BIFF) 15 A100 1001 A63
 17 A3000 63 A30
 04 A3 A5
 14 A6 100
 110 A15 A400 A19
 75 JOE 0

7.2.D

 Page 3

 1.7.65

i.e. the line BUZZ is to be deleted and replaced by the lines

BIFF) 15 A100 1001 A63
 17 A3000 63 A30

and the line

 110 A15 A400 A19

is to be inserted further down.

The following corrections will produce this result:

ALTER BUZZ 1
BIFF) 15 A100 1001 A63
 17 A3000 63 A30
ALTER 2AFTER BUZZ
 110 A15 A400 A19
END

The line name 2AFTER VS BUZZ is correct even though the label
BUZZ has been deleted and an extra line inserted. This name should not be
written as 3AFTER VS BIFF because all corrections are applied to the
original version of the program.

Note that a line with only comments is a line and is included
in the line count.

7.2.E

 Page 1

 1.7.65

7.2.E PUNCHING CONVENTIONS

Symbolic Input is primarily for use with 7-track paper tape
(Flexowriter code) and 5-track paper tape (Pegasus teleprinter code) see
4.3.3.

7.2.E.1 7-track Orion Flexowriter Code

The punching rules for 7-track tape with Symbolic Input are
chosen so that if the printout is correct then so in general also is the
tape. Note 7.2.E.1.2. The following rules therefore apply primarily to
the printout. It is most important that the tape should not be manually
moved back in the Flexowriter punch unit.

Each tape should commence with a leader of at least 6 ins.
(15cm.) of run out (repeated UC) and must terminate with a similar trailer.
It is recommended that a trailer should be terminated by NL; several ER's
and ST.

The last significant line on any tape should be followed by at
least 3 NL's. This is also applied to lines including the directives ENTER
and READ.

Run-out may also appear whenever convenient in the body of the
tape. Run-out should always be preceded and terminated by NL.

7.2.E.1.1 The Flexowriter carriage can print up to 115 characters or
composite characters on any one line but this is restricted to 108 by
setting the left hand margin to start at character position 8. After
position 8 there are six tabulating positions set at intervals of 16 print
positions.

7.2.E.1.2 Overprinting is restricted. SP and ER may overprint or be
overprinted by any character (C say) in which case the compound characters
will be C and ER respectively. The only other overprinting allowed is
crossed parentheses ╫ (fully described in the next section) and any
character overprinted by itself. Hence P BS R or . BS LC, whilst appearing
on the printout will be rejected.

BS is assumed to work in all positions except at the left-hand
margin, hence NL BS has the effect NL. Any combination of SP, BS and TB
may be used to position the carriage for overprinting.

7.2.E.1.3 If the composite character ╫ i.e.) BS (, is read anywhere on a
line, the whole line will be ignored by Input. ╫ may be erased if desired
and also reinstated by being printed in some other vacant position. This
may be carried out as many times as proves desirable, and the line will be
completely ignored so long as one ╫ remains unadulterated.

7.2.E.1.4 ER is ignored everywhere on the printout.

7.2.E.1.5 UC and LC may appear anywhere, they will be ignored if non-
significant. No distinction is made between upper and lower case letters.

7.2.E.1.6 Vertical bar '|' in a line indicates that the characters
following it as far as NL are comments. Comments are output as part of a
corrected symbolic program. Crossed parentheses in the comments will cause
the whole line to be ignored on both sides of the vertical bar.

7.2.E

 Page 2

 1.7.65

Vertical bar may immediately follow the main part of the line
or may be preceded by any number of spaces.

In this document reference to a 'line' will mean the line up to
a vertical bar which if present will be regarded as NL.

7.2.E.1.7 PT, ST. PN, PF and all unassigned character values are ignored
by Symbolic Input. Hence they are not copied in corrections.

7.2.E.1.8 The symbols [,], <, ?, ', ½, while quite legitimate as part of
comments will be treated as error symbols in the main part of a symbolic
line. Other special characters must be used in their correct context.

7.2.E.1.9 Although the characters Å, Ä, Ö are available on some
Flexowriters, they may not be used in symbolic identifiers, routine names,
job or document names.

7.2.E.2 ** 5-track tape - Pegasus/Mercury/Sirius Teleprinter Code

The checking of 5-track tape in Input is less effective than
with 7-track tape since most of the characters will be in use.

7.2.E.2.1 Non-significant shifts or pairs of shifts are permitted, though
a message will be given.

7.2.E.2.2 Runout of tape (which consists of repeated FS. i.e. "blank"
tape) must be terminated by CR LF. CR must be followed by LF and LF must
be preceded by CR or LF. ER is ignored in all positions except between CR
and LF.

7.2.E.2.3 No facility is provided with 5-track tape Symbolic Input for
abandoning a line. The only procedure apart from tape editing is to erase
all characters in the line.

7.2.E.2.4 This document will deal mainly with 7-track input, any
differences in procedure due to using 5-track tape will be noted.

7.2.E.2.5 The character → is used in the same way as '|' in 7-track
tape.

7.2.E.3 Punched Cards

The code and punching conventions used are those of the Orion
Monitor Program. This is described in section 5.6.2 of this Manual.

7.2.F

 Page 1

 1.11.1962

7.2.F ADDRESSES AND INSTRUCTIONS

The first part of this section deals with the primitive
instructions i.e. instructions in which the contents of the address fields
are written as numbers; basic addresses or peripheral names. 140- and 141-
instructions are dealt with in section 7.2.P.3.

7.2.F.1 Layout of Primitive Instructions

An instruction is normally written:

Function VS X-address VS Y-address VS Z-address NL

7.2.F.1.1 The function is written in the usual mixed decimal octal code.
VS before the function will be ignored.

7.2.F.1.2 Modification of the X and Y addresses is indicated by punching
X or Y or both immediately after the function. A signalled instruction is
indicated by writing S immediately after the function. X, Y and S may
appear in any order.

7.2.F.1.3 The function and letters are terminated by VS, typical
functions are:

TB 00SP)
114XYSTB) 7- track

SP SP 81λSXϕSP 5- track **

7.2.F.2 Addresses

The numbers in the X, Y and Z addresses may be

 (i) Accumulator addresses
 (ii) Register addresses
(iii) Constants
 (iv) Drum addresses
 (v) Names of peripherals

7.2.F.2.1 The core store locations are referred to by the programs as A0,
A1,...,A63 (which are the program's accumulators) and as A64 onwards, which
are the ordinary registers. Accumulator and register addresses are
terminated by VS. The datum point is added, where appropriate, to the
addresses on input before the program is executed.

7.2.F.2.2 X and Y addresses will be stored modulo 215 and Z addresses
modulo 26.

7.2.F

Page 2

 1.11.1962

7.2.F.2.3 Replacement of X and Y addresses is denoted by including the
addresses in parentheses without intervening VS. Replacement of the Z
address is an error.

7.2.F.3 140- and 141-Instructions

7.2.F.3.1 The mode in these instructions is written after the function,
separated from it by a full stop. Letters X, Y, S if required, are written
following the mode, e.g.

140.1VS 141. 21YVS

The mode is written as one or two decimal digits, and must be
in the range 0 to 31.

The addresses in these instructions require special treatment.
This speciality is indicated by the decimal point and mode. If these are
omitted the addresses will be treated normally.

7.2.F.3.2 The X-address in these instructions is normally written as
zero.

7.2.F.3.3 The Y-address in the 140-instruction contains a peripheral name
in the codes specified in section 7.2.C.2, or an address which is to be
replaced, e.g.

140.1 0 *MT3

may be written, or

 14 A3 *MT3
140.1 0 (A3)

7 2.F.3.4 The Y-address in the 141-instruction must be in the range 0 to
224-1. The least significant 15 bits will be stored in the Y-address, the
least significant bit of the X-address (D23) will be zero and the remaining
9 bits of the Y-address will be added into the next 9 bits (D14-D22) of the
X-address unless Y is replaced. Modification and replacement of the X-
address cannot affect the 24—bit drum address.

7.2.G

 Page 1

 1.11.1962

7.2.G SYMBOLIC IDENTIFIERS, LABELS, DRUM LABELS AND EQUATIONS

7.2.G.1 Symbolic Identifiers

A Symbolic Identifier (also known as a Symbolic Address or more
often just an Identifier) may appear in an address field or be used in
other formats to represent an address or number whose value is not known at
the time of writing. This is termed "using" the identifier.

An identifier may also appear as a label, or as the left hand
side of an equation. This is termed "setting" the identifier.

7.2.G.1.1 A Symbolic Identifier is a set of up to fifteen letters and
digits. The first character must be a letter, and if it is an A then the
second character must also be a letter. A by itself constitutes an error,
as does more than fifteen characters.

7.2.G.1.2 An identifier may be set as the sum or difference of other
identifiers, numbers or addresses. The rank of an identifier is the number
of datum points to be added. This will normally be 0 and 1 for numbers and
addresses respectively, but provision is made for the rank to be anywhere
in the range -2 to +5.

Examples of the rank of address fields are:

RANK +1 BUZZVS

RANK -1 BUZZ-JOE+30VS

RANK +3 BUZZ+JOE+30VS

RANK +5 BUZZ+JOE+A10+A11+3QVS

where BUZZ and JOE have ranks 1 and 2 respectively.

The various items, whether identifiers, addresses or numbers,
are separated by + or - . VS terminates the address field but is not
allowed between the separate items.

7.2.G.1.3 The Z-address must be of rank 0 or 1 and be in the range of -63
to +63 before addition of the datum point, otherwise a report will be
printed. A report will be printed, optionally, if the rank of an X or Y
address is not 0 or 1.

7.2.G.2 Labels and Drum Labels

An identifier may be set by an equation or by a label or drum
label. An instruction or, more generally, any line, is labelled by writing
the identifier before the word and terminating it by) or)). In the first
case the identifier is set as the core-store address of the word it labels
and in the second case as the drum address.

7.2.G

 Page 2

 1.11.1962

If there are many labels for one line it may be convenient to insert NL
between the labels and the instruction or other line labelled; this is
permissible.

Thus

 75 JIM 0

JOE) 14 A40 1
JIM) 34 A40 6

requires identifiers set by labels as core store addresses, and less
commonly

 BINGO)) +0.75
 +0.77
 .
 .
 +0.84

may be used with

141.1 0 BINGO
142 A30 20

to transfer a table of constants from the drum into the core store.

Any number of labels of either type may be attached to a word,
each being terminated by its appropriate bracket(s).

A line on the printout of a program may correspond to several
consecutive computer words. If a label is attached to such a line it will
be interpreted as the address of the first of these words.

7.2.G.2.1 VS is not allowed between an identifier and) or)), but is
ignored before a label and after the terminating) or)).

7.2.G.2.2 In the program

BUZZ) 00 A230 A30O A4
 JOE) 2048 A3
FIZZ) 85 A90 A50 7

where the line labelled JOE) represents, say, 4 computer words, Symbolic
Input counts words to give

 BUZZ + 5 = FIZZ.

7.2.G

 Page 3

 1.11.1962

7.2.G.2.3 A label will be output in basic language by Symbolic Input as
Ln where n is a positive integer. If one writes L3, for example, in
Symbolic Input it will still be stored as the next available Ln and hence
in all probability it will not be stored as L3. However, if it is desired
to store it as L3 the asterisk notation is used, i.e. *L3 in a Symbolic
program will ensure that the label is stored as L3. Note that when L3 is
then referred to in the program it will always have to be written *L3. L0
to L255 are left free for labels set in this way. Identifiers in Basic
Input are described in section 7.1.2.

7.2.G.3 Equations

Equations are used to set identifiers which are not set by
labels. They are written as shown in the following examples:

 BUZZ = JOE-FRED+100+700
BINGO = 73219

The left hand side is terminated by = and the right hand side
is terminated by NL. VS may appear on either side of the equality sign.

7.2.G.3.1 The right hand side may contain anything which can appear in an
address field, excluding the parentheses notation.

7.2.G.3.2 The identifiers will be prefixed by the name of the routine in
which they are read unless a complete prefix is written with the
identifier. The system of prefixing is described in Section 7.2.L.3.

7.2.G.3.3 The rank of the right hand side may be between -2 and +5.

7.2.G.3.4 Three levels of setting an equation are available, optional or
weak settings, normal equations and over—riding or strong equations for
corrections.

The level of an equation is indicated by the use of
parentheses, e.g.

(BUZZ = A30) - optional or weak setting

 BUZZ = A30 - normal setting

)BUZZ = A30(- strong or over-riding setting

No other combination of parentheses is permissible. Setting an
identifier by using a label is equivalent to an equation at the "normal"
level.

If an identifier is set at more than one level, it must be set
only once at the strongest level used, all other settings will be ignored.

7.2.G

 Page 4

 1.11.1962

7.2.G.3.5 Equations of the form BUZZ = BUZZ+1 are not allowed. Where
necessary, corrections can be carried out within the job tape or by using a
correction tape (see section 7.2.D).

7.2.G.3.6 It must be possible to re-arrange the equations in a program in
such a way that these equations can be solved successively (starting with
the first and proceeding sequentially down the re-arranged list of
equations) by nothing more than inserting previously obtained values for
identifies appearing on the right hand sides.

For example, it is permissible in a program to include the following
equations in any order,

L1 = A20+L2

L2 = L3+7

L3 = 402

because these may be re-arranged (by Symbolic Input) thus:

L3 = 402

L2 = L3+7

L1 = A20+L2

in which form they can be evaluated successively by simple substitution.

On the other hand, the equations

L10 = L20+A5

L20 = A25-L10

cannot be solved by the above process and therefore are impermissible.

7.2.H

 Page 1

 1.7.65

7.2.H DIRECTIVES

A directive comprises a verb followed by a number of parameters
and addresses, e.g.

START 4

The verb is set of letters; it can be terminated by VS or NL.
VS before the verb is ignored. Addresses and parameters required by the
directive are written after the verb, separated by VS and the final one
terminated by NL.

Only the first three letters of a verb need be written as the remainder
will be ignored by the compiler. Less than three letters is an error.

7.2.H.1 List of Available Directives

The section dealing with each directive is given following the full name of
the directive.

ALTER 7.2.D.1 MONITOR 7.2.Q.1

 NAME 7.2.H.4

BASIC 7.2.C.2.1 NEW 7.2.C.2.4

CHAPTER 7.2.P.1.1 NORMAL 7.2.J.2

CORRECT 7.2.C.2.2 NOSIGNAL 7.2.H.3

 OCTAL 7.2.J.2.6

DOUBLELENGTH 7.2.J.2.1 PACKNUMBERS 7.2.J.2.7

END 7.2.C.2.9 and
7.2.D.1

REPORT 7.2.C.2.6

ENTER 7.2.H.2.2 PROGRAM 7.2.N.2.4

FLOATINGPOINT 7.2.J.2.2 READ 7.2.C.2.7

 RESERVE 7.2.C.2.3

 ROUTINE 7.2.C.1.1

 START 7.2.H.2.1

LIBRARY 7.2.M.2.2 STERLING 7.2.J.2.8

MACRO 7.2.N.2.4 TEXT 7.2.J.2.9

MASK 7.2.J.2.3 TIME 7.2.C.2.5

MIDPOINT 7.2.J.2.4 TRANSFER 7.2.P.2

MIXEDNUMBERS 7.2.J.2.5

7.2.H.2 START and ENTER directives

7.2.H.2.1 The START directive is used to "label" the various starting
points with a program. It is written before the first instruction to be
obeyed on a separate line.

If there are numerous entry points they will be numbered from
0,

e.g. START VS 6 NL

A number must always be given and it must be preceded by VS.

7.2.H.2.2 The ENTER directive is used to enter a program at any place
marked by a START directive.

7.2.H

 Page 2

 1.7.65.

Thus ENTER VS 0 NL at the end of a program tape will cause the
program to be entered at the place predetermined by the directive START 0.
ENTER directive needs a separator see 7.1.5.5.

Normally there will be only one entry point, but if a job is
suspended the operator may wish to restart it at a different point, these
points will then have to be preceded by START directives.

In this case the operator types on the Flexowriter,

e.g. BLOGGS VS ENTER VS 4 NL • .

in order to enter job BLOGGS at the instruction following the directive
START VS 4 NL.

The entry points are recorded in the form of a list of chapter
changing 150 instructions (section 5.3.50) each occupying two words in the
drum store. When the program is entered in this way the entire chapter is
brought into the core store.

7.2.H.3 NOSIGNAL

This directive may be written in the Job Tape or in the
program, it causes signal instructions to be obeyed like ordinary
instructions when the program is obeyed,

7.2.H.4 NAME

e.g. NAME FINS/ABC/FILE/REEL/-

This causes 8 words to contain the document name or document
request name; one component in a word, the characters right justified.

e.g. NAME A/NAME/A.B.1/*

 NAME A/REQ12/-/XYZ/-

 NAME A/REQ12/-/XYZ/-/

The name is stored at the current value of the transfer addresses into 8
words. One component is stored in a word. Not all 8 components and
corresponding solidi need be specified. For a specified component, the
corresponding word contains the characters, if less than 8, right-
justified. Unless the last character on the line is - (minus), then for
non-specified components the corresponding words will be clear. If the
last character is - (minus) then all subsequent words will contain
character - (minus) at the l.s. end. Thus in the second example the last 4
words of the 8 will all contain - (minus) and in the last example the last
3 words will be clear. * and ** cause today's date and the time
respectively to be stored as that component.

7.2.J

 Page 1

 1.11.1962

7.2.J NUMBERS - SPECIAL FORMATS

Symbolic Input recognises integers, fractions and sets of two
24-bit, four 12-bit or eight 6-bit packed numbers as one word. The special
formats are introduced by directives, specified in section 7.2.J.2.

7.2.J.1 Numbers

An integer or fraction (or identifier) must be preceded by + or
- . Each number must be separated from the next by VS or NL. Numbers are
stored one per word, unless they are packed as specified in 7.2.J.1.3 or
unless they follow a special directive.

Examples

+42VS-0.072VS-582NL
+0.0051NL

Identifiers may be used to represent integers, fractions or
sets of packed numbers. In such cases the identifier must be preceded by +
or - where it is used, but not where it is set, i.e. on the left-hand side
of an equation. The sign is required to distinguish the identifier from a
directive.

More generally, one may write anything which can appear on the
right-hand side of an equation, provided that + or - is written first. An
initial minus only affects the first item, not the whole word.

e.g. -JOE+FRED+300

where JOE = 1000
 FRED = 2000

will be stored as 1300.

7.2.J.1.1 If xF is a fraction then it must satisfy

-1.0 ≤ xF ≤ 1 - ε

where ε = 2-47. Fractions may be punched as -0.5, -.5, -1.0 or +00.6.

Excess digits in a fraction will be used for rounding.

7.2.J.1.2 If xI is an integer then it must satisfy

-247 ≤ xI ≤ 247-1

A report will be printed if an integer or a fraction overflows.

7.2.J

 Page 2

 1.11.1962

7.2.J.1.3 It is possible to pack numbers in any of the following formats
without a directive; these are:

 (i) two 24-bit numbers, separated by a comma,

 (ii) four 12-bit numbers, separated by 3 commas,

(iii) eight 6-bit numbers, separated by 7 commas,

any other packed number format is specified by the PACKEDNUMBERS directive
described fully in section 7.2.J.2.7.

Input obtains details of the fields by counting the commas on
each line. Note that these forms may change from word to word, i.e.

42, 4483 NL
43,484,485,44 NL

and will cause two 24-bit numbers and four 12-bit numbers to be stored in
two words.

A comment will be printed if the number of commas is not 1, 3
or 7.

7.2.J.1.4 The following notes apply to all packed numbers.

VS may only appear immediately before or after a comma.

The field between the commas may contain anything that may be
written in an address field except that the contents of any field of less
than 15 bits must be independent of the D.P. and must not contain the name
of a peripheral device.

A number is said to be in range in a k-bit field if its modulus
can be represented in k bits, e.g. -63 is in range in a 6-bit field and is
stored as +1 because the sign bit (i.e. the (k+1)st. bit) is not stored.

7.2.J.2 Directives for Special Formats

The formats described in this section will be dealt with by
Input, but they must be introduced by a directive.

The introductory directive will be accepted if it complies with
the notes in section 7.2.H. Input then continues to read in prescribed
mode until the directive NORMAL or another directive occurs (except in the
case of the TEXT directive, which is described fully in section 7.2.J.2.9).

Labels may be attached to words in special format but not to
texts.

7.2.J

 Page 3
 23.10.63

7.2.J.2.1 DOUBLELENGTH directive **

The directive is followed on the next line and lines by the
numbers to be stored. Several numbers can be punched on one line, each
separated by VS. Each number is stored in two consecutive words in
standard double—length form, i.e. the l.s. word is non—negative. (See
2.0.2(e))

If the number is an integer, x:T, then it must be in the range

-294 ≤ x:I ≤ 294-1

If the number is a fraction, x:F, then it must be in the range

-1.0 ≤ x:F ≤ 1-294 [this should be 1-2-94 Ed]

Each punched number must be preceded by a sign (plus or minus).
A decimal point is not allowed in an integer. Zero and zeros before the
decimal point in a fraction are optional. VS is not allowed between the
sign and the last digit of the number. Several integers and/or fractions
may be punched on a line, each separated by VS.

Sums and differences of numbers are not allowed nor are
symbolic or basic identifiers.

Non significant zeros are allowed and excess digits in a
fraction will be used for rounding.

A report will be made if the stored form overflows.

7.2.J.2.2 FLOATINGPOINT directive **

On the same line separated from the directive by VS may follow
a signed integer which is used if block floating numbers are required.

The directive is followed on the next line and lines by the
numbers to be stored. Only one number may be punched per line. Each
number is stored in a word in standard floating-point form (see 2.0.2(d)).
The permitted range is also stated in this section. These are the operands
used by the Group 9 instructions.

Each number is punched as an argument and, if required, a
decimal exponent. The argument must be a signed integer fraction or mixed
number. If there is a decimal exponent it is punched as a signed integer
on the same line as the argument and separated from the latter by a comma
or by VS. If a comma is punched it can be preceded and/or followed by VS.
VS is not allowed in any other position.

If block floating numbers are required then the exponent will
be punched as a signed integer following the

7.2.J

 Page 4

 23.10.63

directive and separated from it by VS. (Comma instead of VS is not allowed
here.) If an exponent is also given opposite an argument the two will be
added together, both exponents being signed. A block exponent can only be
changed by punching a further FLO directive.

If no exponent is specified the exponent taken is zero by
default.

For example, the numbers 12.34567, 345.6 and 0.0031 can thus be
stored in the following ways.

FLO VS + 1
+1.234567
+3.456 VS +1
+3.1, -4
NOR

or FLO
+12.34567
FLO VS -4
+3456000
+31
NOR

A report will be made if the stored form overflows or
underflows.

7.2.J.2.3 MASK directive **

This directive is followed on the next line and lines by the
masks required. Only one mask may be punched per line. The format of each
line indicates the position of 0 and 1 bits required to be stored in a
word. 0 or 1 is followed by -(minus) which is followed by the number of
0's or 1's required. Commas are used to separate the fields of 0's and
1's. The total number of bits specified must be 48. VS must not appear
between digits or between a digit and -(minus). VS is allowed on either
side of a comma.

For example, to form a mask containing 1 bits in positions D21
to D35 and 0's in the rest of the word then the following lines are used.

MAS
 0-21, 1-15, 0-12
NOR

A report will be made if the total number of bits is not 48.

7.2.J.2.4 MIDPOINT directive **

This directive is followed on the next line and lines by the
mixed-numbers to be stored. Only one number may be punched per line. Each
number is stored in two consecutive words in standard double-length mid-
point form (see 2.0.2(e)iii), i.e. the integral part in the m.s. word and
the fractional part in the l.s. word.

7.2.J

 Page 5

 23.10.63

The number X:M must be in the range

-247 ≤ x:M ≤ 247 - 2-47

Each punched number must be preceded by a sign and in general
will be a mixed number. For example +31.63 (though +2 and +2. and +.2
are allowed; +. is not allowed). VS is not allowed between the sign and the
last digit of the number. Non significant zeros are allowed and excess
digits in the fractional part will be used for rounding.

A report will be made if the stored form overflows.

7.2.J.2.5 MIXEDNUMBERS directive **

On the same line separated from the directive by VS follows a
signed integer, n, which is used to store the number as explained below.

The directive is followed on the next line and lines by the
number. Only one number may be punched per line. Each number is firstly
read as a standard double-length mid-point number and is then shifted
arithmetically up (47-n) places where n is specified with the directive.
The m.s. half is then stored as the single-length number.

Each punched number must be preceded by a sign. VS is not
allowed between the sign and the last digit of the number. Non significant
zeros are allowed and excess digits in the fraction will be used for
rounding.

If xs is the number it must be in the range

-2n ≤ xs ≤ 2n - 2(n-47)

The point is considered to be (n+1) binary places from the m.s.
end of the word.

If the stored number is regarded as a fraction F then the mixed
number will be 2nF.

Decimal scaling must be done by hand whilst writing the number.

For example to store 3.14159 x 102 x 2-12 the following lines
are used.

MIX VS +12
+314.159
NOR

A report is made if the stored form overflows.

7.2.J

 Page 6

 23.10.63

7.2.J.2.6 OCTAL directive **

The directive is followed on the next line and lines by the
octal numbers to be stored. Only one octal number with a maximum of 16
octal digits is allowed per line.

Effectively each octal digit is stored in 3 bits. If fewer
than 16 digits are punched they are stored at the l.s. end of the word,
unless preceded by a point in which case they are stored at the m.s. end.

VS is ignored and thus could be punched after every fourth
digit to assist checking.

A report will be made if the decimal digits 8 and 9 are
present.

7.2.J.2.7 PACKEDNUMBERS directive **

This directive is used to pack anything that can be written in
an address-field (see 7.2.F.2) into a word; the word being divided into at
least two fields of specified lengths. The lengths of the fields in the
word being

N1 , N2 ,,Ni ,,Nk bits

These field lengths are punched on the same line as the
directive separated from it and each other by VS , i.e. as

PAC VS N1 VS N2 VS VS Ni VS VS Nk NL

where ∑
k

i
N

1

 must be 48 and at least two Ni’s must be specified.

The "fields"; x1, X2, ..., xi, ..., xk (i.e. integers, symbolic
identifiers, basic addresses, programmers peripheral names, drum addresses,
sums and differences of these) that are to be packed into the word are
punched on the next line separated by commas as

x1, x2, ..., xi, ..., xk

The resultant value of each xi is stored in the corresponding
field length (Ni) of the word.

If a field k bits long is used to hold an integer then the
integer is within the range

0 ≤ n ≤ 2k-1 if unsigned

and -2k-1 ≤ n ≤ 2k-1-1 if signed (i.e. the m.s. bit of the field is
used as a sign bit).

7.2.J

 Page 7

 23.10.63

If the resultant value of each xi is not in range then the
integer is stored modulo the number of bits (Ni) of the specified field.
For example if the field is 7 bits long then -127 will be stored as +1

Further lines containing other "fields", i.e. other xi’s,
separated by commas will be stored into further words in the same length
fields. The field lengths cannot be varied without a new PAC directive.
(Note this differs from the rule applying to standard packed words as given
in Section 7.2.J.1.3)

VS is not allowed in the "fields" between the commas.

A report will be made if the number of commas does not
correspond to the number of fields specified (i.e. the number of commas
will be one less than the number of fields specified).

7.2.J.2.8 STERLING directive **

This directive is followed on the next line and lines by the
sterling quantities to be stored. Several sterling quantities may be
punched per line, each separated by VS. Each sterling quantity is stored
in a word as a binary integer which is the number of pence in this sterling
quantity. The number of pence, d, must be in the range

-247 ≤ d ≤ 247-1

i.e. the sterling quantity, S, must be in the range

-£586,406,201,480. 10. 8 ≤ S ≤ £586,406,201,480. 10. 7

Each sterling quantity A pounds B shillings and C pence must be
punched in the form

sign A.B.C

The + (plus) sign may be omitted. Two points must always be
punched. Non significant zeros in the pound, shilling and pence fields are
allowed. The characters 10 and 11 may be used for pence. VS is not
allowed between the sign (or first digit of the pounds) and the last digit
of the pence.

7.2.J.2.9 TEXT directive **

On the same line as the directive and separated from it by VS may follow an
integer which gives the number of new lines to be added to the end of the
text.

The directive is followed on the next line and lines by the text to be
stored. The text is terminated by a blank line (see 7.2.D); the NORMAL
directive or another special format directive is not used as the terminator
in this

7.2.J

Page 8

23.10.63.

case. The Symbolic Input Routine converts alpha-numeric characters
including those right of a vertical bar into the standard internal code
(see 5.6.1) and stores them into consecutive words, each word containing
eight characters. The first word of the stored text contains in its l.s.
half the total number of characters in the stored text.

Loading newline characters, excepting the first, between TEXT
and the first printing character (excluding ER) are stored and do not
terminate the text.

A number may be written after the directive, e.g.

TEXT VS 3

which gives the number of new line characters to be added to the end of the
text. These texts are then in a form ready for output by the library text
output routine.

7.2.L

 Page 1

 20.6.1963

7.2.L ROUTINES - PROGRAM ORGANIZATION

It is usual to divide a large program into routines, either to separate it
into distinct functional parts or to make it possible for several
programmers to work on it simultaneously or a combination of both.

Note that large programs are divided into chapters (section 7.2.P) but the
division is independent of division into routines and (except in library
subroutines, section 7.2.M) is not used to distinguish identifiers.

7.2.L.1 ROUTINE and END directives

7.2.L.1.1 Routines are named by writing the directive ROUTINE followed by
VS and the routine name (a Symbolic identifier) which is terminated by / ,

e.g.

ROUTINE SORT/

7.2.L.1.2 The master program is an unnamed routine denoted where
necessary by /.

7.2.L.1.3 A routine is terminated by the directive END, followed by VS
Routine Name, e.g.

END SORT/

7.2.L.2 Notation for routines

The following notation will be used throughout section 7.2.L
which is concerned solely with the way routines appear on the printout of
the program tape and not with the way they are obeyed.

Letters B to K denote routines, L to Z identifiers and M.P. the
master program. Underlining where necessary distinguishes that part of an
expression written on the program sheet.

A complete routine e.g. B/ will be represented by

ROUTINE B/
Instructions etc. of B/
END B/

or more concisely B/

7.2.L

 Page 2

 20.6.63

Thus a program may be denoted by

Instructions etc. of M.P.

ROU B/
Instructions etc. of B/
END B/

B/

 / is the

Instructions etc. of M.P. / master

ROU C/
Instructions etc. of C/
END C/

C/

 program

Instructions etc. of M.P.

One routine must be terminated by its END directive before another ROUTINE
directive is written, i.e. in a concise notation.

 B/ is permissible, but

 / B/

/ C/ C/

 D/

 and / B/ C/ are not.

7.2.L.3 References - the identifier and prefix system

The system of identifiers and prefixes provides the following
facilities:

(a) simple local references (i.e. references to words in a
current routine),

(b) simple reference to identifiers having the same meaning
throughout the program (global identifiers),

(c) simple reference to a word in another routine,

(d) a method of incorporating a sub-program into a program
which demands nothing of the author of the sub—program.

7.2.L

 Page 3

 20.6.1963

7.2.L.3.1 Prefixes

The full names of identifier P and routine G in a master
program are respectively /P and /G/. The full names of P in routine J is
/J/P, the expression /J/ is then called the prefix of identifier P.

It is not necessary normally to specify the complete prefix of
an identifier or routine as this will be supplied by Input. A complete
prefix will begin with /, hence all prefixes supplied by Input begin in
this way. If the programmer begins a prefix with / Input will assume it
is complete and it will never be altered in any way.

The details of these facilities are described in the following
sections, all of which refer to the first example in this chapter. Note
that underlining distinguishes characters that are actually written on the
program sheet.

 (i) "Local" references

If P is set in C/ (by label or equation), Input notes
that /C/P is set. If P is then used in C/, Input notes
that /C/P is used and the value of /C/P is given to P
whenever it is used in C/.

For "local" references, no prefix will normally be
written.

 (ii) "Global" references

If P is set in the master program, Input notes that /P is
set,, If then P is used in C/, Input reads this as /C/P.
It then searches for a setting of /C/P and then, if
unsuccessful, of /P. The first one found will be used.

For "global" references, no prefix will normally be
written.

(iii) References to a word in another routine

If P is set in C/, i.e. /C/P is set, and it is required
to refer to this in B/ or the master program, then C/P is
written.

This system will give the required result assuming that all routine names
are distinct.

7.2.M

 Page 1

 1.11.1962

7.2.M LIBRARY SUBROUTINES AND ASSEMBLY

7.2.M.1 Library Subroutines

A library subroutine will have its link L in an accumulator
which is specified within the subroutine by an equation. In general, entry
will be by an 86—instruction. If this is of 3—address type its Y-address
may contain a parameter for the subroutine. The subroutine will exit by an
instruction of the form

87 0 L

To ensure that a copy of the subroutine is in the chapter where
it is to be used the LIBRARY directive (section 7.2.M.2.2(i)) or the 1086
macro-instruction (section 7.2.M.2.2(ii)) is used.

7.2.M.1.1 Accumulators

A subroutine needs accumulators for (i) finding operands and
parameters, (ii) leaving results, and (iii) using as working space. All
accumulators used by a library subroutine are referred to in the subroutine
by identifiers, these are standardised as

:SR/X1, :SR/X2, ...

where SR is the routine name. X1 is optionally set equal to A1. If the
address of an accumulator is dependent on that of another accumulator (e.g.
in double-length working) the addresses are written in the form

:SR/X1, :SR/X1+1

It is open to the user to redefine the accumulators to be used
if the conventional ones are inconvenient. A subroutine may need to do
this with a sub-subroutine.

7.2.M.1.2 The entry point is labelled as :SR/E or, for multiple entry
points, as :SR/E1, :SR/E2, ... , where SR is the routine name.

7.2.M.1.3 Preset parameters other than accumulator space are referred to
within a library subroutine by standardised identifiers

:SR/P1, :SR/P2, ...

where SR is the routine name. The parameters are set optionally and can be
changed by the user if desired.

7.2.M.1.4 If the library subroutine :C/ may be used independently and it
is also used by library subroutine :B/ there are two cases to consider.

7.2.M

 Page 2

 1.11.1962

 (i) If :C/ is used but not :B/, the preset parameters and accumulators
may be reset in the usual way.

 (ii) If :B/ is used, :C/ can be used independently but it is not possible
to set the accumulators and parameters of :C/ independently. The
combined accumulators of :B/ and :C/ may be set, since they appear to
be accumulators of B/.

7.2.M.2 Assembly - the LIBRARY directive and the 1086 macro

7.2.M.2.1 The name of a library subroutine is always preceded by a colon.
The colon may be preceded by a chapter name. No VS may appear between a
chapter name and the colon or between the colon and the subroutine name.

7.2.M.2.2 There are two ways of ensuring that a library subroutine is
included in a chapter (note that section 7.2.N deals with the concept of a
macro-instruction).

 (i) the LIBRARY directive which is written

LIBRARY VS :S/R Name/

This will put a copy of the named subroutine in the current chapter
starting at the current transfer address and will increase the transfer
address by the length of the subroutine.

 (ii) the 1086 macro-instruction which is written

1086 VS :S/R Name/Entry Point

This will replace the macro-instruction with the instruction

86 VS : Name/Entry point VS :Name/L

where L is the link and will put a copy of the named subroutine at the end
of the current chapter.

The colon must not be preceded by a chapter name in the LIBRARY
directive or in the 1086 instruction.

Only one copy of a subroutine may be stored in one chapter. To
include a parameter in the Y-address of the 86 instruction write

1086 VS :S/R Name/Entry point VS Parameter NL

and then a 3-address 86-instruction will be compiled.

7.2.M.2.3 If an identifier C3:SIN/X1 is written anywhere it means
identifier X1 of the copy of the subroutine named :SIN/ stored in chapter
C3.

An error is reported if no copy is loaded in the specified
chapter.

7.2.M

 Page 3

 20.10.65

7.2.M.2.4 An identifier :SIN/X1 means identifier X1 of Subroutine :SIN/
in the current chapter. An error is reported if no copy is loaded in the
current chapter.

7.2.M.2.5 Preset parameters and addresses of accumulators used by a
library subroutine are reset by equations of the form

C3 : SIN/P2 = 28

 : SIN/X1 = A4

Note that the first equation has the same meaning wherever it is written.

These equations can only be read once at the highest level for
each copy of a library subroutine.

7.2.M.2.6 A library S/R is classified as a library S/R of a specified
chapter.

7.2.M.2.7 Auxiliary chapters

Those are used with multi-chapter library subroutines. They
enable the main chapter of the library subroutine to be incorporated in the
chapter from which it was called and incorporate the remaining chapters of
the library subroutine into the main program as secondary or auxiliary
chapters.

Each chapter of a multi-chapter library subroutine must have a
different name, but only the name of the main chapter of a library
subroutine is available to the Object programmer. Auxiliary chapters may
not be used with the chapter changing macros, as their location is only
known to the main chapter of the library subroutines.

7.2.M.2.8 It is not possible to have in the same chapter, two or more
library subroutines which each call the same library subroutine. If this
happens then Symbolic or Basic may report reset identifiers. They may,
however, be used in different chapters.

7.2.N

Page 1

 1.11.1962

7.2.N MACRO-INSTRUCTIONS AND THE + AND MAXIMUM NOTATIONS

A macro-instruction (or 'macro') is an instruction which the
programmer thinks of as one concept but which cannot necessarily be
expressed in one machine instruction. Function numbers of four digits are
reserved for these, and the layout of addresses may be non-standard.

Macro-instructions 1000-1999 are reserved for standard-macros,
i.e. those with a fixed meaning, and numbers 2000-2999 denote programmer-
defined macros**, i.e. those given a meaning by the programmer for a
particular program only. The numbering of macros need not be dense.

7.2.N.1 Standard macros

The standard macros are described in their relevant sections as
follows:

1000)
1001) Section 7.2.P.5.1
1002)
1003)
1086 Section 7.2.M

7.2.N.2 Private (or Programmer's) macros**

7.2.N.2.1 To clarify the description in this section we will set up an
"example macro".

A macro is required which will place the greater of two numbers
in A1 unless the first number is less than the number in A2, in which case
it is to jump to BUZZ. The two numbers are members of a set stored in
A400-A410, the exact pair required is to be specified each time the macro
is used.

A suitable set of instructions (if JOE and FRED are the
addresses of the numbers to be used) is

 64 BUZZ JOE A2
 04 A1 JOE
 64 NEXT FRED A1
 04 A1 FRED
NEXT)

7.2.N.2.2 There are three types of addresses in a macro; they are:

 (i) fixed addresses, which are the same whenever the macro is used,
e.g. A1, A2 and BUZZ in 7.2.N.2.1

 (ii) addresses relative to the first order of the macro.

(iii) variable addresses, which are to be defined each time the macro
is used in the program, e.g. JOE and FRED in 7.2.N.2.1.

7.2.N

 Page 2

 1.11.1962

Fixed addresses may be either primitive addresses or
identifiers. Each time a macro is used the prefixes to the identifiers are
set, hence each use of a macro may give rise to different prefixing.

Addresses relative to the first order of the macro are dealt
with using the + notation, which is described in section 7.2.N.3.1.

Variable addresses are assigned numbers 1, 2, 3, (the
numbering must be dense) and are referred to in the definition of a macro
as =1, =2, =3 ... They are set in the program which uses the macro, as
addresses following in the same line as the macro function. If our example
has function 2048 and it is desired that JOE=A400 and FRED=A401 the
instruction

2048 A400 A401

is used where JOE and FRED are defined in the macro-definition as =1 and =2
respectively. Equations are not allowed in a macro.

7.2.N.2.3 Labels may be attached to instructions in the definition of a
macro.

A macro must be pre-defined i.e. the definition must be read
before it is used by a program.

7.2.N.2.4 A macro is defined using the directive MACRO. The example in
7.2.N.2.1 would be written (with the function 2048 say) as follows:

MACRO 2048
64 BUZZ =1 A2
04 A1 =1
64 2 + =2 A1
04 A1 =2
PROGRAM

The terminating directive is PROGRAM, the directive NORMAL is
not used as it is possible to use special formats (terminated by NORMAL)
within a macro. The example in the following section shows this facility.

7.2.N.2.5 Variable addresses in a definition may be replaced and address
fields in a macro definition may contain items with variable addresses or
combinations thereof.

To define a one-address macro-instruction with function 2100 to
put one of three specified masks into A10 we can write:

MACRO 2100
04 A10 =1+2+
75 4+ 0
MASK
0-10,1-38
0-12,1-20,0-16
1-20,0-28
NORMAL
PROGRAM

7.2.N

 Page 3

 1.11.1962

This macro is used in the program by the instruction

2100 VS n

where n = 0, 1 or 2 depending on which mask is required in A10.

7.2.N.2.6 Thus a macro is written in the program in a similar manner to
an ordinary instruction except that the number of addresses is limited only
by the number which can be included on the same line as the function and
one line on the program sheet will be turned into several instructions.

The first address will be inserted wherever =1 appears and so on.

7.2.N.2.7 The last definition read by Input will be used.

7.2.N.2.8 Standard macros cannot be defined by the user.

7.2.N.2.9 A macro-instruction may not be used in a macro-definition.

7.2.N.3 + and maximum notations

7.2.N.3.1 A single + at the end of an address will cause the transfer
address to be added. This includes the D.P. For example, loops may be
written

00 A1 A2
34 A2 4
80 -2+ A2 A3

In any field, +0 means zero, 0+ means the transfer address and + is an
error.

Addresses terminated by + are called relative addresses, they
should be used very sparingly, because

(a) a program including them cannot easily be corrected.

(b) a macro may occupy several words of storage but only one
line on the program.

(c) one can easily miscount.

7.2.N.3.2 The notation >(BUZZ, A200, JOE+50) represents the greatest of
the individual items separated by the commas.

It is mainly used for determining the maximum amount of core
storage required for program storage.

e.g. >(&CH1, &CH2, &CH3)

represents the amount of storage required for the longest of chapters 1, 2
and 3. The &-notation is described in section 7.2.P.4.

The maximum notation may not be used within another maximum
notation.

7.2.N

Page 4

 1.11.1962

The ranks of the items to be compared must be the same.

The notation may appear wherever an identifier can be used.
Combinations such as

 >(B1, B2, B3) + 20

and >(B1, B2, B3) - >(C1, C2, C3)

are quite permissible.

Any item within the parentheses which has a negative value
counts as zero.

VS may appear only immediately preceding or following a comma.

7.2.P

 Page 1

 1.8.65

7.2.P CHAPTERS AND CHAPTER CHANGING

Large programs are divided into chapters, each of which is
brought to the working store (to be obeyed or referred to) in a single
instruction.

No 'automatic' loading facilities are provided: if the user
refers, in chapter C, to something not in chapter C, it is his
responsibility to see that this item is in the core store.

The division of a program into chapters is independent of its
division into routines, i.e. a chapter may contain several routines or a
routine may contain several chapters.

7.2.P

 Page 2

 1.8.65

7.2.P.1 CHAPTER and ENTER directives

7.2.P.1.1 Chapters are introduced by the CHAPTER directive in the format.

CHAPTER VS Name of Chapter NL

The chapter name is a set of, at the most, 15 letters and
digits as specified in section 7.2.G.1.1.

If it is the first chapter, it will be stored immediately after
the chapter change words (section 7.2.P.5). Other chapters will be stored
immediately after the chapters preceding them on tape.

7.2.P.1.2 Chapters are terminated by a new CHAPTER directive, or ENTER
directive (or END see 7.C.2.9(iv))

7.2.P.2 TRANSFER directive.

Chapters are arranged using a TRANSFER directive. The layout is
carried out in the Core-Store and the completed chapter is transferred to
the drum.

The directive is written

TRANSFER VS Core-Store address NL

which sets the transfer address to the given address. For example:

TRA A100

TRA BUZZ+3

Note that a maximum of 14 transfer directives are allowed in a
chapter.

It is allowed to write, for example

TRA +20+

which leaves 20 registers unused on both drum and core. This type does not
count towards the maximum of 14.

7.2.P.2.1 The CHAPTER directive sets the transfer address to be A64.

7.2.P.3 Layout of a chapter

The layout of a chapter will be:

 (i) Instructions etc. in positions specified by the TRANSFER directive.
During the process the T.A.(transfer address) reaches a maximum value
K say.

 (ii) Library subroutines will follow (i), starting at K, unless the
positions of the S/R's have been specified as described in section
7.2.M.2.

7.2.P

 Page 3

 1.11.1962

7.2.P.4 The ampersand notation

Due to 7.2.P.3(ii) above, finding the length of a chapter may
be tedious. The notation

& Name of chapter

denotes the length of the named chapter.

Thus if the first word of chapter CH4 is labelled BUZZ, then
BUZZ+&CH4 is the address of the first word which can be used for data.

7.2.P.4.1 VS must not appear between & and the chapter name.

7.2.P.4.2 The & notation can be used wherever an identifier can be used.

7.2.P.5 Chapter-changing macros

Chapters will normally be transferred to the core store by a
standard macro since if the user loads and enters a chapter using a 141/142
combination plus a jump, the jump may be overwritten by the transfer.

7.2.P.5.1 The chapter-changing macros are written in the program as
follows:

 (i) 1000 VS Name of chapter VS ADDR NL
Bring the chapter down from the drum and jump to the working
store address ADDR.

 (ii) 1001 VS Name of chapter NL
Bring the chapter down from the drum, then continue with the
next instruction.

(iii) 1002 VS Name of chapter VS ADDR1 VS ADDR2 VS ADDR3 NL
Bring down that part of the named chapter between addresses
ADDR1 and ADDR2 and enter it at ADDR3. These three addresses
are working store ones.

 (iv) 1003 VS Name of chapter VS ADDR1 VS ADDR2 NL
Proceed was with 1O02 but do not enter the chapter, instead
continue with the next instruction.

Each of these macro-instructions consists of two words.

7.2.Q

 Page 1

 1.7.65

7.2.Q MONITORING

There are three levels of reporting during Input, these are
introduced by the REPORT directive (see 7.2.C.2.6.)

Monitoring is available in the following events:

*0WN Own dealing with failure

*SIG Signals

*JUM Jumps

*FOV Floating point overflow

*OVR Overflow

*DRU or peripheral name Peripheral transfers

*IMP Impermissible operand

*PFP or *PFN Program failure

*TIM Timer overflow

*UNR Unrounded floating-point

*URQ Urgency

*QUI Quick jumps

*WEA Weak reservations

Monitoring is obtained with the MONITOR directive e.g.

MONITOR VS Event VS Style

The event is written in the coded form indicated above, the
style is an integer between 0 and 5, or a core-store address (this is known
as Style 7) in which case action on this event is to jump to the specified
location. (see 5.2 for more details).

This directive may appear anywhere on the job tape or program
tape.

7.2.R

 Page 1

 1.7.65

7.2.R MESSAGES

7.2.R.1 Flexowriter Messages

7.2.R.1.1 Initial Entry to the Compiler.

 i) When the compiler is entered initially the question "STORE ON
TAPE OR DRUM?" is printed. This is where the compiled program
is stored during compilation„

 The operator's reply is TAPE or DRUM using ANSWER directive.

7.2.R.1.2 Message during compilation

 i) The compiler reserve more drum as required and if no more is
available the message
NO DRUM
is printed. The job will continue when more drum is available
and no operator action is required.

 ii) If the Orion Library is required the normal load document
message is printed. (This message will be repeated if the
document reserved proves to have non-standard format for the
Orion Library. The non-standard document will be automatically
relinquished.) If any subroutines are required which do not
appear on the library tape a message of the form
ROUTINE :SQRT NOT FOUND
is printed for each routine that is missing. This message is
also output on the monitoring peripheral if one is reserved for
the job. The job is then abolished.

iii) If the input medium is five-track paper tape and the punching
conventions are violated the job is abolished after the message
*ERROR ON 5-TRACK TAPE. PLEASE MARK.
is output on the Flexowriter. This message corresponds to
error number 66 which is specified in section 7.2.R.2.2(v).
The 5-track paper tape conventions for Symbolic Input are
specified in section 7.2.E.2.

7.2.R.1.3 Message when compilation is finished.

 i) If no errors are found on a load-and go run the message
COMPILATION COMPLETE.
is printed immediately before Basic Input commences reading the
compiled program. At this point the input peripheral is
relinquished.

 ii) If there are any errors on a load-and-go run the message
ERRORS FOUND. LOAD & GO ILLEGAL.
is printed. This message also appears on the monitoring
peripheral if one is reserved for the job. The job is then
abolished.

7.2.R

Page 2

 1.7.65

iii) If a BASIC directive has been read and the job should output a
compiled program the message
ERRORS FOUND. NO COMPILATION.
is printed if errors are found. This message is also output or
the monitoring peripheral. The job is immediately abolished
and no compiled program is produced.

 iv) If any identifiers have not been set then Symbolic outputs a
list of these whatever the report level, on job's monitoring
peripheral (output will be to the Flexowriter if the job hasn't
one). Unset identifiers are not treated as errors and the
program will be entered or output etc.

An example of this output is given below.

UNSET IDENTIFIERS

L257 SQUARE/WS

L296

L301 TWO:SQRT/E1

L302 INITA:SQRT/E1

L345 WS

L346 (CHAPTER INITA LENGTH)

L391 (CHAPTER TWO CORE START)

L406 BLOGGS/WS

L413 (CHAPTER INITA DRUM START)

7.2.R

Page 3

 1.7.65

7.2.R.2 Monitoring Peripheral Messages

7.2.R.2.1

 i) The messages
ERRORS POUND. LOAD & GO ILLEGAL
ERRORS FOUND. NO COMPILATION
on the monitoring peripheral corresponds to similar ones on the
flexowriter. These are specified on section 7.2.R.1.3. They
are not terminated by a full stop on the monitoring peripheral.

 ii) An error in a corrections document results in a message of the
form
ERROR n IN CORRECTIONS
(where n is an integer) being output on the monitoring
peripheral. Depending on n (which is the error-number) further
lines of information are output as follows.

n = 1 Error in an ALTER directive. A second message gives the
line-image of the ALTER directive.

n = 2 Caused by one correction deleting a line which is
referred to by a second correction. Both will be
ignored. A second message gives the line-image of the
original line of symbolic program.

n = 3 Caused by more than one correction attempting to alter
the same line or group of consecutive lines. All
corrections of this type will be ignored and the line-
image of the original Symbolic program line is output.

n = 4 When the end of the symbolic program is reached this
message is output for each unapplied correction. The
second line of information gives the position of the
correction as originally given in the ALTER directive as
follows:

n AFTER BUZZ

where n is the line-count from symbolic identifier BUZZ.

n = 5 An attempt to apply one or more corrections after the end
of the program. No further information is given. e.g.
If the correction ALTER 3 After LOOP given to correct

LOOP) 75 BEGIN 0
ENTER 0

These errors can result in further action depending on the level of the
REPORT directive. This is specified in paragraph (v) of section 7.2.R.2.2.

7.2.R

Page 4

1.7.65

7.2.R.2.2 REPORT directive message.

The output on each REPORT level is specified in section
7.2.C.2.6. All reports are output on the specified peripheral (i.e. the
monitoring peripheral.) The form of the output message is as follows.

 i) When a REPORT directive (level 1 or 2) is read a DOCUMENT
directive is output on the specified peripheral with the
document name requested in the REPORT directive.

 ii) The line-image of each directive in the Symbolic program is
output in level 1 and in level 2 the Basic Input interpretation
of each directive is also given, where practical. This extra
report is given for the following directives:

END, ENTER, MONITOR, NAME, NEW, NOSIGNAL, REPORT, RESERVE and
TIME.

The END directive here is the directive which terminates a
Program and not that which terminates a routine.

If the directive is in a programmers' macro the line-image is
replaced by two lines of information is specified in paragraph (v) of this
section.

iii) If the rank of a field is not 0 or 1 a message of the form

RANK IS -1
+A3-A4-A5

is output level 2. The second line gives the line-image of the
field in question. If the field is in a programmer's macro the
line-image of the field is replaced by two lines of information
as specified in paragraph (v) of this section.

 iv) The Basic Input interpretation of all the symbolic identifiers
that are referred to is output in level 2 under the heading

SYMBOLIC IDENTIFIERS

The identifiers *L0 to *L255 are never output as they are not
altered apart from the omission of the asterisk.

The Symbolic Input Compiler generates Basic Input identifiers,
but most of these can be of no concern to the Symbolic
programmer; hence they are output in the Basic Input form only.
However three types of these identifiers are of some value,
they refer to the core starting address, the drum starting
address and the length of each chapter. In these cases the
meaning is output as shown below.

Identifiers in the main program are given in the form LINK,
those referring to a routine in the form ROUTINE/IDENTIFIER and
those referring to a library subroutine are given in the form
THREE:EXP/E1 where the library subroutine EXP is in chapter
THREE.

An example of this output is given below.

SYMBOLIC IDENTIFIERS
L257 SQUARE/WS
L301 TWO:SQRT/E1
L302 INITA:SQRT/E1

7.2.R

Page 5

 1.7.65

 v) Error Reports.

An error, other than in Corrections, is reported in the form of
a message 'ERROR p' where p is an integer. It is followed
normally by the line-image of the offending line of input. The
error indicator is set and no further program is stored. The
Compiler ignores the rest of the line, but further program is
checked unless

 i) the 15th error has been found

 or ii) an error is found in a READ, BASIC, CORRECT,
WITH, GIVING or ENTER directive.

or iii) the report level is 0,

in which cases the job is abolished. The error numbers are
listed in paragraph (vi) below.

The line-image of the offending line of input is not given if
the error has arisen from a line in a programmer's macro. An
error in a programmer's macro is not found until the macro is
used, hence the same error may be reported each time the macro
is used. The error report will give a second line of
information of the form

LINE m of MACRO

where m is an integer which is 1 for the first line of the
macro, 2 for the second and so on. The third line gives the
line image of the line which called for the macro.

Error number 65 introduces all reset identifiers. These are
given in the same format as that used under the heading
SYMBOLIC IDENTIFIERS described in paragraph (iv) above. Error
numbers 66, 67, 68, 69 have no line-image and the job is
abolished. Error 66 causes a Flexowriter message as specified
in section 7.2.R.1.2(iii).

An example of error printing is given below:

ERROR 06

ENT) 04X (*L301) STORE WS+1

ERROR 19

LINE 3 OF MACRO

2001 (WORK) GNC/E .

ERROR 65

L402 GNC/LINK

L573 THREE:SQRT/XI

ERROR 66

7.2.R

Page 6

1.7.65

 vi) Error numbers.

The following list defines all the error-numbers excepting the
errors in corrections which are defined in section 7.2.R.2(ii)

00 Impermissible first character of a line or storable word.
01 Integer overflow in any field (incl. special format

directives.)
02 Wrong character in a field.
03 Wrong character terminating a field.
04 Format error in a symbolic identifier.
05 Datum point in chapter, routine or library subroutine name.
06 *Ln, where n is an integer greater than 255.
07 Peripheral name with device number greater than 31.
08 Impermissible field in > notation.
09 Field overflow.
10 Non-zero rank in a field of less than fifteen bits.
15 Wrong character in function (including mode X,Y and S) of

an instruction.
16 Function or mode in an instruction out of range.
17 Impermissible address field in an instruction.
18 Wrong character terminating address field in an

instruction.
19 Z-address field with rank not 0 or 1.
23 Missing field in a quantity.
24 Impermissible quantity field.
25 Number of packed quantities not 1,2,4 or 8
26 Fraction not -1.0 when integral part is non-zero.
30 Impermissible left-hand side in an equation.
31 No right-hand side in an equation.
32 Impermissible right-hand side in an equation.
35 Number of TRA directives (not +10+ type) greater than 14.
36 Format error in a directive.
37 Impermissible document name or document request name.
38 Format error in a special format sequence.
39 Unknown directive (including NORMAL if it is found other

than when terminating a special format sequence).
40 Transfer-address of rank other than 1.
41 Numerical value of a transfer-address negative.
42 First CHAPTER directive securing after storable words.
43 Job-tape directive in program.
44 More than one CORRECT directive.
45 Both BASIC and GIVING directive encountered.
46 GIVING directive not preceded by CORRECT and WITH directives.
47 RESERVE Peripheral Name THIS for a device that is already

reserved, as for a device of a different type from the
current input peripheral.

48 LIBRARY directive duplicated in the same chapter.
49 Illegal peripheral name in BASIC, REPORT or GIVING directive.
50 No END directive at end of job tape after CORRECT

directive read.
51 NO START directive.
52 Wrong character in a 1086 macro.
53 Impermissible parameter in a 1086 macro.
54 Wrong character in a chapter-change macro.
55 Wrong number of address fields in a chapter-change macro.
56 Impermissible address field in a chapter-change macro.

7.2.R

Page 7

 20.10.65

60 Programmer's nacre used when not pre-defined.
61 Undefined variable address used in a programmer's macro.
65 Reset identifiers.
66 Violation of 5-track paper tape punching conventions.
67 No terminating Directive in input magnetic tape.
68 Deck fail or repeated read failure on input magnetic

tape.
69 Insufficient core store reserved.

If errors have occurred and the run is abolished early then the
"abolish number" is the number of errors detected.

If errors have occurred then Symbolic does not implement any
Assembly facilities (i.e. 1086 macro and LIBRARY directives).

7.2.S

 Page 1

 1.7.65

7.2.5 Dumping Facility

While Symbolic is compiling it is possible to type ENTER 1 on
the Flexowriter which causes a dump to be made at some stage. Thus if a
machine failure occurs, it will be possible to restart the job at the last
dump point. Incorporated in the Symbolic compiler is the library
subroutine :DUMP/.

Symbolic dumps when it is convenient to do so. If the symbolic
program is in the process of being read in when ENT 1 is typed, then
Symbolic makes a note of this and dumps when a READ, END or ENTER directive
is read. If the symbolic program has already been read in and is in the
"winding up" stage when ENT 1 is typed then the dump takes place
immediately. If a dump is taking place or the compiled program is being
output then ENT 1 will have no effect except that the message ENT RES.VIOL
FLX is output on the Flexowriter; Symbolic continues. Note that after the
message COMPILATION COMPLETE. ENT 1 must not by typed.

If there has been a dump then Symbolic automatically dumps just
before the compiled program is output, or just before Basic Input is asked
to read if a load and go run.

If the mode is "storing on TAPE" the dump will be made on the
magnetic tape already reserved for the job, (this is usually *MT31)
whereas if the mode is "storing on DRUM" then a scratch tape will be
requested (usually as *MT31) - a pre-addressed tape may not be used as a
dump tape and it is advisable to use a 3600 ft. tape.

After a dump has been made, all slow peripherals will be
disengaged. The operator firstly marks the reading position of any paper
tape or card input with the dump number and then engages the devices.

The dump information is output on the Flexowriter only e.g.

DUMP NO. 8 DRUM 9472 CORE 2544 DATUM 512
DUMP ON document name of dump tape.

If a failure occurs, then restoring is by the utility routine
ORION/SYSTEM/RESTORE/- (see Orion Library specifications). A write-permit
ring must be fitted to the dump tape when the program is restored, so that
Symbolic can automatically dump. A job tape for restoring for the dump
point given above for example is

JOB REST 2544 512
V3 = 8
V4 = *MT31
RES *MT31 document req. name of dump tape
READ ORION/SYSTEM/RESTORE/-

7.3

Page 1

15:11:1963

7.3 Binary and Map Input

7.3.1 The Program

Binary-and-Map Input provides a means for fast input of
programs. It is the nearest to binary input that is provided on Orion.

It is at present available on magnetic tape, and 7-track paper
tape.

7.3.1.1 The B-directive (see 7.1.4.2.16) gives the number of words in
Binary-and-Map language that follow. On seven track paper tape the B-
directive is followed by two newlines, after which the binary and map
information begins (this includes a checksum); on magnetic tape the binary
and map information begins in the next block after that containing the B-
directive. Blocks on magnetic tape follow the conventions of section 6.

When Binary-and-Map Input has completed its work, it returns to
Basic Input to continue reading the tape.

7.3.2 The Language

7.3.2.1 Binary-and-Map language consists of any number of units
consisting of one word of map followed by twelve words of program, and one
unit consisting of one word of map and up to twelve words of program. On
seven track paper tape this is followed by a checksum.

7.3.2.2 The map word in each unit specifies how each word of program in
that unit is to be relativized, i.e. whether or not the datum point is to
be added in to the X or Y fields.

It is laid out as follows:-

DO-D23 must be clear

D46 1 if X of 1st word of program is to be relativized

D47 1 if Y of 1st word of program is to be relativized

D44 1 if X of 2nd word of program is to be relativized

D45 1 if Y of 2nd word of program is to be relativized

 .

 .

 .

D24 1 if X of 12th word of program is to be relativized

D25 1 if Y of 12th word of program is to be relativized.

7.3

 Page 2

15:11:1963

It is only possible to have addresses of rank 1 or 0 in binary-
and-map language, and rank 1 addresses in the X-or Y-address positions of
the word only.

7.3.2.3 The program words comprise the words that are to be stored, in
binary, prior to adding in the datum point where necessary. Binary-and-Map
Input begins storing words on the drum, starting at the current value of
Basic Input’s V1, and when it has completed its work, leaves V1 and V2
increased by the number of words stored.

7.3.3 On seven track paper tape only, there is a checksum, which is
formed by adding every word of the binary and map information (program and
map words) to a location initially clear, and after each addition forming
the not-equivalent with OVR. I.E., for each word INFO of the information.

00 CHECKSUM INFO
27 CHECKSUM 4

is obeyed. The number in the B-directive includes this checksum.

7.3.4 When Basic Input resumes control from Binary-and-Map Input, all
settings of identifiers, forward references not yet filled in, monitor
conditions, calls, etc., still apply. On 7-track paper tape Basic Input
resumes reading with the next character on the tape; on magnetic tape with
the first block after the last one containing binary-and-map information.

7.3.5 A library program called Mapper has been provided to convert
programs from Basic Language to binary-and-map form.

